Skip to main content

Outstanding Efficacy of Essential Oils Against Oral Pathogens

  • Chapter
  • First Online:

Abstract

The essential oils (EOs), 30 tested on Streptococcus sanguinis and 21 on Streptococcus salivarius, expressed satisfactory antimicrobial activity (MIC ≤ 250 μL mL−1) on clinical isolates or corresponding referent strains (ATCC 10556 and ATCC 9222). S. sanguinis was more sensitive than S. salivarius on cineole-rich lacking thymol oils, while S. salivarius was more sensitive than S. sanguinis on thymol-rich lacking cineole oils. Analysis of the MIC values within the groups (MIC-strong or MIC-good) revealed that the clinical isolates of both Streptococcus species generally show lower sensitivity to EOs than their corresponding referent strains. Analysis of data for MIC-strong EOs tested on both ATCC Streptococcus strains revealed that in the class of monoterpene hydrocarbons, one should look for the presence of myrcene, α-thujone, α-phellandrene, and o-cymene, while in the class of oxygenated monoterpenes, the desired constituents should be camphor, 1,8-cineole, carvacrol, eugenol, and linalyl acetate.

The aim of this chapter is to present EOs with the most significant in vitro activity against Streptococcus sanguinis and Streptococcus salivarius, major human oral pathogens, and to estimate which of their constituents might contribute to desired activity, as “markers compounds.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbaszadegan A, Sahebi S, Gholami A, Delroba A, Kiani A, Iraji A, Abott PV (2016) Time-dependent antibacterial effects of Aloe vera and Zataria multiflora plant essential oils compared to calcium hydroxide in teeth infected with Enterococcus faecalis. J Investig Clin Dent 7:93–101

    Article  PubMed  Google Scholar 

  • Araya M, Morelli L, Reid G, Sanders M, Stanton C, Pineiro M, Ben Embarek P (2002) Guidelines for the evaluation of probiotics in food. London: Report of a Joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food

    Google Scholar 

  • Bajaj JS (2016) Review article: potential mechanisms of action of rifaximin in the management of hepatic encephalopathy and other complications of cirrhosis. Aliment Pharmacol Ther 43:11–26

    Article  CAS  PubMed  Google Scholar 

  • Barbour A, Philip K, Muniandy S (2013) Enhanced production, purification, characterization and mechanism of action of salivaricin 9 lantibiotic produced by Streptococcus salivarius NU10. PLoS One 8(10):e77751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barretto C, Alvarez-Martin P, Foata F, Renault P, Berger B (2012) Genome sequence of the lantibiotic bacteriocin producer Streptococcus salivarius strain K12. J Bacteriol 194:5959–5960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becerril R, Nerin C, Gomez-Lus R (2012) Evaluation of bacterial resistance to essential oils and antibiotics after exposure to oregano and cinnamon essential oils. Foodborne Pathog Dis 9:699–705

    Article  PubMed  Google Scholar 

  • Berkiten M, Okar I, Berkiten R (2000) In vitro study of the penetration of Streptococcus sanguis and Prevotella intermedia strains into human dentinal tubules. J Endod 26:236–239

    Article  CAS  PubMed  Google Scholar 

  • Bernardes WA, Lucarini R, Tozatti MG et al (2010) Antibacterial activity of the essential oil from Rosmarinus officinalis and its major components against oral pathogens. Z Naturforsch C 65:588–593

    Article  CAS  PubMed  Google Scholar 

  • Bersan SMF, Galvao LCC, Goes VFF et al (2014) Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC Complement Altern Med 14:451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bogojevic J, Nikolic M, Markovic T, Ciric A, Markovic D (2016) Analysis of chemical composition of the most efficient essential oils towards Enterococcus faecalis referent strain ATCC 29212 and clinical isolates. Med Raw Mater 36:3–25

    Google Scholar 

  • Borges MCL, Sesso MLT, Roberti LR, Oliveira M, Nogueira RD, Geraldo-Martins VR, Ferriani VP (2015) Salivary antibody response to streptococci in preterm and fullterm children: a prospective study. Arch Oral Biol 60:116–125

    Article  CAS  PubMed  Google Scholar 

  • Burton JP, Drummond BK, Chilcott CN, Tagg JR, Thomson WM, Hale JDF, Wescombe PA (2013) Influence of the probiotic Streptococcus salivarius strain M18 on indices of dental health in children: a randomized double-blind, placebo-controlled trial. J Med Microbiol 62:875–884

    Article  PubMed  Google Scholar 

  • Carlsson J, Edlund MB (1987) Pyruvate oxidase in Streptococcus sanguis under various growth conditions. Oral Microbiol Immunol 2:10–14

    Article  CAS  PubMed  Google Scholar 

  • Carlsson J, Iwami Y, Yamada T (1983) Hydrogen peroxide excretion by oral Streptococci and effect of lactoperoxidase–thiocyanate–hydrogen peroxide. Infect Immun 40:70–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caufield PW, Dasanayake AP, Li Y, Pan Y, Hsu J, Hardin JM (2000) Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect Immun 68:4018–4023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha JD (2007) Chemical composition and antibacterial activity against oral bacteria by the essential oil of Artemisia iwayomogi. J Bacteriol Virol 37:129–136

    Article  CAS  Google Scholar 

  • Cha JD, Jung EK, Kil BS, Lee AY (2007) Chemical composition and antibacterial activity of essential oil from Artemisia freddei. J Microbiol Biotechnol 17:2061–2065

    CAS  PubMed  Google Scholar 

  • Chen YY, Clancy KA, Burne RA (1996) Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus. Infect Immun 64:585–592

    CAS  PubMed  PubMed Central  Google Scholar 

  • CLSI (2013) Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement. CLSI document M100-S23. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  • Cosentino S, Tuberoso CI, Pisano B, Satta M, Mascia V, Arzedi E et al (1999) In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett Appl Microbiol 29:130–135

    Article  CAS  PubMed  Google Scholar 

  • Crevelin EJ, Caixeta SC, Dias H, Groppo M, Cunha WR, Martins CHG, Crotti AEM (2015) Antimicrobial activity of the essential oil of Plectranthus neochilus against cariogenic bacteria. Evid Based Complement Alternat Med 2015:102317

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniels S (2015) Health Canada approves BLIS K12 Probiotic. Nutraingredients-usa.com; http://www.nutraingredients-usa.com/Suppliers2/Health-Canada-approves-BLIS-K12-probiotic. 1 Sep 2017

  • Delgado B, Fernandez PS, Palop A, Periago PM (2004) Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distributions. Food Microbiol 21:327–334

    Article  CAS  Google Scholar 

  • Di Filippo S, Delahaye F, Semiond B et al (2006) Current patterns of infective endocarditis in congenital heart disease. Heart 92:1490–1495

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Pierro F, Colombo M, Zanvit A, Rottoli AS (2016) Positive clinical outcomes derived from using Streptococcus salivarius K12 to prevent streptococcal pharyngotonsillitis in children: a pilot investigation. Drug Healthc Patient Saf 8:77–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Didry N, Dubreuil L, Pinkas M (1994) Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm Acta Helv 69:25–28

    Article  CAS  PubMed  Google Scholar 

  • Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    Article  CAS  PubMed  Google Scholar 

  • Fouad AF, Kum K-Y, Clawson ML, Barry J, Abenoja C, Zhu Q, Caimano M, Radolf JD (2003) Molecular characterization of the presence of Eubacterium spp. and Streptococcus spp. in endodontic infections. Oral Microb Immunol 18:249–255

    Article  CAS  Google Scholar 

  • Fujimura S, Nakamura T (1979) Sanguicin, a bacteriocin of oral Streptococcus sanguis. Antimicrob Agents Chemother 16:262–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajan EB, Aghazadeh M, Abashov R, Milani AS, Moosavi Z (2009) Microbial flora of root canals of pulpally-infected teeth: Enterococcus faecalis a prevalent species. J Dent Res Dent Clin Dent Prospects 3:24–27

    PubMed  PubMed Central  Google Scholar 

  • Ge Y, Caufield PW, Fisch GS, Li Y (2008) Streptococcus mutans and Streptococcus sanguinis colonization correlated with caries experience in children. Caries Res 42:444–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes B, Pinheiro ET, Gade-Neto CR et al (2004) Microbiological examination of infected dental root canals. Oral Microbiol Immunol 19:71–76

    Article  CAS  PubMed  Google Scholar 

  • Gregori G, Righi O, Risso P et al (2016) Reduction of group A beta-hemolytic streptococcus pharyngo-tonsillar infections associated with use of the oral probiotic Streptococcus salivarius K12: a retrospective observational study. Ther Clin Risk Manag 12:87–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heng NC, Haji-Ishak NS, Kalyan A et al (2011) Genome sequence of the bacteriocin producing oral probiotic Streptococcus salivarius strain M18. J Bacteriol 193:6402–6403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrero ER, Slomka V, Bernaerts K et al (2016) Antimicrobial effects of commensal oral species are regulated by environmental factors. J Dent 47:23–33

    Article  PubMed  Google Scholar 

  • Hyink O, Wescombe PA, Upton M, Ragland N, Burton JP, Tagg JR (2007) Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus salivarius K12. Appl Environ Microbiol 73:1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Jacinito RC, Gomes BP, Ferraz CC, Zaia AA, Filho FJ (2003) Microbiological analysis of infected root canal from symptomatic and asymptomatic teeth with periapical periodontitis and the antimicrobial susceptibility of some isolated anaerobic bacteria. Oral Microbiol Immunol 18:285–292

    Article  Google Scholar 

  • Juliano C, Mattana A, Usai M (2000) Composition and in vitro antimicrobial activity of the essential oil of Thymus herba-barona Loisel growing wild in Sardinia. J Essent Oil Res 12:516–522

    Article  CAS  Google Scholar 

  • Juven BJ, Kanner J, Schved F, Weisslowicz H (1994) Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J Appl Bacteriol 76:626–631

    Article  CAS  PubMed  Google Scholar 

  • Kaci G, Goudercourt D, Dennin V et al (2014) Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol 80:928–934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kadowaki M, Hashimoto M, Nakashima M, Fukata M, Odashiro K, Uchida Y, Shimono N (2013) Radial mycotic aneurysm complicated with infective endocarditis caused by Streptococcus sanguinis. Intern Med 52:2361–2365

    Article  PubMed  Google Scholar 

  • Kaneko F, Togashi A, Saito S et al (2011) Behcet’s disease (Adamantiades-Behcet’s disease). Clin Dev Immunol 2011:681956

    Article  PubMed  CAS  Google Scholar 

  • Kao YT, Shih CM, Tsao NW, Lin FY, Chang NC, Huang CY (2013) Subacute bacterial endocarditis presenting as left upper quadrant abdominal pain. J Chin Med Assoc 76:521–523

    Article  PubMed  Google Scholar 

  • Kreth J, Merritt J, Shi W, Qi F (2005) Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187:7193–7203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreth J, Zhang Y, Herzberg MC (2008) Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol 190:4632–4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462

    Article  CAS  PubMed  Google Scholar 

  • Laura DM, Quinones A, Benenstein R et al (2014) Giant nonfamilial left atrial myxoma presenting with eye embolism and nonvalvular Streptococcus sanguinis endocarditis. J Am Coll Cardiol 63:2049

    Article  PubMed  Google Scholar 

  • Lew HP, Quah SY, Lui JN, Bergenholtz G, Yu VSH, Tan KS (2015) Isolation of alkaline-tolerant bacteria from primary infected root canals. J Endod 41:451–456

    Article  PubMed  Google Scholar 

  • Li J, Helmerhorst EJ, Leone CW, Troxler RF et al (2004) Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol 97:1311–1318

    Article  CAS  PubMed  Google Scholar 

  • Lysakowska ME, Ciebiada-Adamiec A, Sienkiewicz M, Sokolowski J, Banaszek K (2016) The cultivable microbiota of primary and secondary infected root canals, their susceptibility to antibiotics and association with the signs and symptoms of infection. Int Endod J 49:422–430

    Article  CAS  PubMed  Google Scholar 

  • Mahboubi M, Kazempour N (2011) Chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oil. Iran J Microbiol 3:194–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mancl AK, Kirsner SR, Ajdic D (2013) Wound biofilms: lessons learned from oral biofilms. Wound Repair Regen 21:352–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Marković T (2011) Etarska ulja i njihova bezbedna primena. Institut za proučavanje lekovitog bilja „dr Josif Pančić“, Beograd (in Serbian)

    Google Scholar 

  • Masdea L, Kulik EM, Hauser-Gerspach I, Ramseier AM, Filippi A, Waltimo T (2012) Antimicrobial activity of Streptococcus salivarius K12 on bacteria involved in oral malodour. Arch Oral Biol 57:1041–1047

    Article  CAS  PubMed  Google Scholar 

  • Mashima I, Nakazawa F (2014) The influence of oral Veillonella species on biofilms formed by Streptococcus species. Anaerobe 28:54–61

    Article  PubMed  Google Scholar 

  • Matsuo T, Shirakami T, Ozaki K, Nakanishi T, Yumoto H, Ebisu S (2003) An immunohistologic al study of the localization of bacteria invading root pulpal walls of teeth with periapical lesions. J Endod 29:194–200

    Article  PubMed  Google Scholar 

  • McCarthy C, Snyder M, Parker RB (1965) The indigenous oral flora of man. The newborn to the 1-year old infant. Arch Oral Biol 10:61–70

    Article  CAS  PubMed  Google Scholar 

  • Nikolić M (2015) Biological activity of selected essential oils towards Staphylococcus, Streptococcus, Lactobacillus, Pseudomonas, Enterococcus and Candida species isolated from human oral cavity. Ph.D. Thesis Dissertation, Faculty of Biology, University of Belgrade

    Google Scholar 

  • Nikolic M, Glamoclija J, Ferreira I et al (2014) Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind Crop Prod 52:183–190

    Article  CAS  Google Scholar 

  • Nikolić M, Marković T, Marković D, Glamočlija J, Ćirić A, Smiljković M, Soković M (2016) Antimicrobial activity of three Lamiaceae essential oils against common oral pathogens. Balk J Dent Med 20:160–167

    Article  Google Scholar 

  • Ohnishi Y, Kubo S, Ono Y et al (1995) Cloning and sequencing of the gene coding for dextranase from Streptococcus salivarius. Gene 156:93–96

    Article  CAS  PubMed  Google Scholar 

  • Okahashi N, Nakata M, Sakurai A et al (2010) Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion. Biochem Biophys Res Commun 391:1192–1196

    Article  CAS  PubMed  Google Scholar 

  • Perez F, Calas P, de Falguerolles A, Maurette A (1993) Migration of a Streptococcus sanguis strain through the root dentinal tubules. J Endod 19:297–301

    Article  CAS  PubMed  Google Scholar 

  • Power DA, Burton JP, Chilcott CN, Dawes PJ, Tagg JR (2008) Preliminary investigations of the colonization of upper respiratory tract tissues of infants using a pediatric formulation of the oral probiotic Streptococcus salivarius K12. Eur J Clin Microbiol Infect Dis 27:1261–1263

    Article  CAS  PubMed  Google Scholar 

  • Provenzano JC, Rocas IN, Tavares LFD, Neves BC, Siqueira JF (2015) Short-chain fatty acids in infected root canals of teeth with apical periodontitis before and after treatment. J Endod 41:831–835

    Article  PubMed  Google Scholar 

  • Rocas IN, Siqueira JF (2012) Characterization of microbiota of root canal-treated teeth with posttreatment disease. J Clin Microbiol 50:1721–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolph HJ, Lennon A, Riggio MP, Saunders WP, MacKenzie D, Coldero L, Bagg J (2001) Molecular identification of microorganisms from endodontic infections. J Clin Microbiol 39:3282–3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosan B, Lamont RJ (2000) Dental plaque formation. Microbes Infect 2:1599–1607

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto M, Siqueira JF Jr, Rôças IN, Benno Y (2007) Bacterial reduction and persistence after endodontic treatment procedures. Oral Microbiol Immunol 22:19–23

    Article  CAS  PubMed  Google Scholar 

  • Seow WK, Lam JHC, Tsang AKL, Holcombe T, Bird PS (2009) Oral Streptococcus species in pre-term and full-term children—a longitudinal study. Int J Paediatr Dent 19:406–411

    Article  PubMed  Google Scholar 

  • Shovelton DA (1959) Bacterial invasion of dentine around infected pulp canals: a preliminary report. Alabama Dent Rev 7:7–12

    Google Scholar 

  • Siqueira JF Jr, Rocas IN (2008) Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod 34:1291–1301

    Article  PubMed  Google Scholar 

  • Siqueira JF Jr, Rôças IN (2009) Diversity of endodontic microbiota revisited. J Dent Res 88:969–981

    Article  PubMed  Google Scholar 

  • Siqueira JF, As I, Paiva SSM, Magalhaes KM, Guimaraes-Pinto T (2007) Cultivable bacteria in infected root canals as identified by 16S rRNA gene sequencing. Oral Microbiol Immunol 22:266–271

    Article  CAS  PubMed  Google Scholar 

  • Stauffacher S, Lussi A, Nietzsche S, Neuhaus KW, Eick S (2017) Bacterial invasion into radicular dentine—an in vitro study. Clin Oral Investig 21:1743

    Article  PubMed  Google Scholar 

  • Stingu CS, Eschrich K, Rodloff AC, Schaumann R, Jentsch H (2008) Periodontitis is associated with a loss of colonization by Streptococcus sanguinis. J Med Microbiol 57:495–499

    Article  PubMed  Google Scholar 

  • Tagg JR (2008) Streptococci as effector organism for probiotic and replacement therapy. In: Versalovic J, Wilson M (eds) Therapeutic microbiology: probiotics and related strategies. ASM Press, Washington, DC, pp 61–81

    Chapter  Google Scholar 

  • Tagg JR, Dierksen KP (2003) Bacterial replacement therapy: adapting “germ warfare” to infection prevention. Trends Biotechnol 21:217–223

    Article  CAS  PubMed  Google Scholar 

  • Tatikonda A, Sudheep N, Biswas KP, Gowtham K, Pujari S, Singh P (2017) Evaluation of bacteriological profile in the apical root segment of the patients with primary apical periodontitis. J Contemp Dent Pract 18:44–48

    Article  PubMed  Google Scholar 

  • Thenisch NL, Bachmann LM, Imfeld T, Leisebach Minder T, Steurer J (2006) Are mutans streptococci detected in preschool children a reliable predictive factor for dental caries risk? A systematic review. Caries Res 40:366–374

    Article  CAS  PubMed  Google Scholar 

  • Ultee A, Gorris LGM, Smid EJ (1998) Bactericidal activity of carvacrol towards the food-borne pathogen Bacillus cereus. J Appl Microbiol 85:211–218

    Article  CAS  PubMed  Google Scholar 

  • Ultee A, Bennik MHJ, Moezelar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 68:1561–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker GV, Heng NCK, Carne A, Tagg JR, Wescombe PA (2016) Salivaricin E and abundant dextranase activity may contribute to the anti-cariogenic potential of the probiotic candidate Streptococcus salivarius JH. Microbiology 162:476–486

    Article  CAS  PubMed  Google Scholar 

  • Wescombe PA, Hale JD, Heng NC et al (2012) Developing oral probiotics from Streptococcus salivarius. Future Microbiol 7:1355–1371

    Article  CAS  PubMed  Google Scholar 

  • Wilson W, Taubert KA, Gewitz M et al (2008) Prevention of infective endocarditis: guidelines from the American Heart Association. J Am Dent Assoc 139:3S

    Article  PubMed  Google Scholar 

  • Wisniewska-Spychala B, Sokalski J, Grajek S et al (2012) Dentigenous infectious foci – a risk factor of infective endocarditis. Med Sci Monit 18:CR93–CR104

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang TS, Liou ML, Hu TF, Peng CW, Liu TT (2013) Antimicrobial activity of the essential oil of Litsea cubeba on cariogenic bacteria. J Essent Oil Res 25(2):120–128

    Article  CAS  Google Scholar 

  • Zheng LY, Itzek A, Chen ZY, Kreth J (2011) Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis. Int J Oral Sci 3:82–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Kreth J (2010) Role of Streptococcus mutans eukaryotic-type serine/threonine protein kinase in interspecies interactions with Streptococcus sanguinis. Arch Oral Biol 55:385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Kreth J (2012) The role of hydrogen peroxide in environmental adaptation of oral microbial communities. Oxid Med Cell Longev 2012:717843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zomorodian K, Ghadiri P, Saharkhiz MJ et al (2015) Antimicrobial activity of seven essential oils from iranian aromatic plants against common causes of oral infections. Jundishapur J Microbiol 8:17766e

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate financial support of the Ministry of Education, Science and Technological Development of Republic of Serbia (Grants № 172026 and 173032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Soković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marinković, J., Marković, T., Miličić, B., Soković, M., Ćirić, A., Marković, D. (2019). Outstanding Efficacy of Essential Oils Against Oral Pathogens. In: Malik, S. (eds) Essential Oil Research. Springer, Cham. https://doi.org/10.1007/978-3-030-16546-8_7

Download citation

Publish with us

Policies and ethics