Skip to main content

Electrooxidation of Sesame Oil in Acid Electrolyte

  • Conference paper
  • First Online:
Infrastructure and Environment

Abstract

The energy industry is based mainly on coal, crude oil, natural gas or nuclear energy. However, in recent years renewable energy sources have also become increasingly used. One of the devices that uses renewable energy sources is a fuel cell (FC). The fuel cell can be powered by hydrogen, methanol, hydrazine or other substrates. Commercial fuel cells use mainly hydrogen, methanol or hydrazine. Due to the fact that water is the only by-product, hydrogen is the considered to be the best fuel for fuel cells. Problems with hydrogen storage cause, however, that new fuels for FCs are very desirable. Vegetable oil seems to be such substance, application of which as fuel in FCs is possible. But in the first place, it is necessary to determine possibilities of electrooxidation of this fuel. The paper presents the research on sesame oil electrooxidation. The work shows results of electrooxidation of sesame oil emulsion on a smooth platinum electrode in acid electrolyte. The maximum stable current density reached in the tests was 5 mA cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Hayre, R., Cha, S., Colella, W., Prinz, F.: Fuel Cell Fundamentals, 3rd edn. Wiley, Hoboken (2016)

    Book  Google Scholar 

  2. Stolten, D.: Hydrogen and Fuel Cells. Fundamentals, Technologies and Applications. Wiley, Weinheim (2010)

    Google Scholar 

  3. Fuel Cell Handbook, 7th edn. EG & G, U.S. Department of Energy (2004)

    Google Scholar 

  4. Larminie, J., Dicks, A.: Fuel Cell System Explained. Wiley, Hoboken (2003)

    Book  Google Scholar 

  5. Hoogers, G.: Fuel Cell Technology Handbook. CRC Press, Boca Raton (2004)

    Google Scholar 

  6. Serov, S., Kwak, C.: Direct hydrazine fuel cells. Appl. Catal. B: Environ. 98(1–2), 1–9 (2010)

    CAS  Google Scholar 

  7. Kelley, S., Deluga, G., Smyrl, W.: A miniature methanol/air polymer electrolyte fuel cell. Electrochem. Solid-State Lett. 3(9), 407–409 (2000)

    Article  CAS  Google Scholar 

  8. Gawdzik, A., Gajda, S., Włodarczyk, P.P., Sofronkow, A.: Hydrogen - highly effective, ecological and clean energy source. Integr. Technol. Energy Saving 2, 28–30 (2001). (in Russian)

    Google Scholar 

  9. Rifkin, J.: The Hydrogen Economy. Jeremy P. Tarcher/Penguin, New York (2003)

    Google Scholar 

  10. Ross, D.K.: Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum 80(10), 1084–1089 (2006)

    Article  CAS  Google Scholar 

  11. Furukawa, H., Yaghi, O.Y.: Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131(25), 8875–8883 (2009)

    Article  CAS  Google Scholar 

  12. Van Gerpen, J.: Biodiesel processing and production. Fuel Process. Technol. 86(10), 1097–1107 (2005)

    Article  Google Scholar 

  13. Sheehan, J., Camobreco, V., Duffield, J., Graboski, M., Shapouri, H.: An overview of biodiesel and petroleum diesel life cycles. National Renewable Energy Laboratory, Prepared for U.S. Department of Energy’s Office of Fuels Development and U.S. Department of Agriculture’s Office of Energy (1998)

    Google Scholar 

  14. Corsini, A., Marchegiani, A., Rispoli, F., Sciulli, F., Venturini, P.: Vegetable oils as fuels in diesel engine. Engine performance and emissions. Energy Procedia 81, 942–949 (2015)

    Article  CAS  Google Scholar 

  15. Kawentar, W.A., Budiman, A.: Synthesis of biodiesel from second-used cooking oil. Energy Procedia 32, 190–199 (2013)

    Article  CAS  Google Scholar 

  16. Włodarczyk, P.P., Włodarczyk, B., Kalinichenko, A.: Possibility of direct electricity production from waste canola oil. In: E3S Web of Conferences (EEMS), vol. 19, p. 01019 (2017)

    Google Scholar 

  17. Włodarczyk, P.P., Włodarczyk, B.: Electrooxidation of coconut oil in alkaline electrolyte. J. Ecol. Eng. 18(5), 173–179 (2017)

    Article  Google Scholar 

  18. Włodarczyk, P.P., Włodarczyk, B., Kalinichenko, A.: Direct electricity production from coconut oil - the electrooxidation of coconut oil in an acid electrolyte. In: E3S Web of Conferences (INFRAEKO 2018), vol. 45, p. 00103 (2018)

    Google Scholar 

  19. Włodarczyk, P.P., Włodarczyk, B.: Canola oil electrooxidation in an aqueous solution of KOH - possibility of alkaline fuel cell powering with canola oil. J. Power Technol. 96(6), 459–462 (2016)

    Google Scholar 

  20. Yen, G.-C.: Influence of seed roasting process on the changes in composition and quality of sesame (Sesame indicum) oil. J. Sci. Food Agric. 50(4), 563–570 (1990)

    Article  CAS  Google Scholar 

  21. Mohamed, H.M.A., Awatif, I.I.: The use of sesame oil unsaponifiable matter as a natural antioxidant. Food Chem. 62(3), 269–276 (1998)

    Article  CAS  Google Scholar 

  22. Yen, G.-C., Shyu, S.-L.: Oxidative stability of sesame oil prepared from sesame seed with different roasting temperatures. Food Chem. 31(3), 215–224 (1989)

    Article  CAS  Google Scholar 

  23. Saydut, A., Duz, M.Z., Kaya, C., Kafadar, A.B., Hamamci, C.: Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel. Bioresour. Technol. 99(14), 6656–6660 (2008)

    Article  CAS  Google Scholar 

  24. Dawodu, F.A., Ayodele, O.O., Bolanle-Ojo, T.: Biodiesel production from Sesamum indicum L. seed oil: An optimization study. Egypt. J. Pet. 23(2), 191–199 (2014)

    Article  Google Scholar 

  25. Shailaja, M., Aruna Kumari, A., Sita Rama Raju, A.V.: Performance evaluation of a diesel engine with sesame oil biodiesel and its blends with diesel. Int. J. Curr. Eng. Technol. Spec. Issue 1 (2013). Proceedings of National Conference on ‘Women in Science & Engineering’ (NCWSE 2013)

    Google Scholar 

  26. Ahmad, M., Khan, M.A., Zafar, M., Sultana, S.: Environment-friendly renewable energy from sesame biodiesel. Energy Sources, Part A: Recov. Utilization Environ. Eff. 32(2), 189–196 (2009)

    Article  Google Scholar 

  27. Bockris, J.O.M., Reddy, A.K.N.: Modern Electrochemistry. Kulwer Academic/Plenum Publishers, New York (2000)

    Google Scholar 

  28. Vielstich, W., Lamm, A., Gasteiger, H. (eds.): Handbook of Fuel Cells: Fundamentals, Technology, Applications. Wiley, Weinheim (2003)

    Google Scholar 

  29. Paraska, O., Karvan, S.: Mathematical modelling in scientific researches of chemical technology processes. Tech. Trans. Mech. 8(107), 203–210 (2010). Cracow University of Technology Press

    Google Scholar 

  30. Sakharov, I.I., Rastiannikov, E.G., Verbitskaia, G.M., Tarasova, L.N.: Washability of syntanol DS-10 from kitchen utensils. Vopr. Pitan. 4, 75–77 (1975). (in Russian)

    Google Scholar 

  31. Survila, A., Mockus, Z., Kanapeckaitė, S., Samulevičienė, M.: Effect of syntanol DS-10 and halides on tin(II) reduction kinetics. Electrochim. Acta 50(14), 2879–2885 (2005)

    Article  CAS  Google Scholar 

  32. Ignatov, O.V., Shalunova, Iu.V., Panchenko, L.V., Turkovskaia, O.V., Ptichkina, N.M.: Degradation of Syntanol DS-10 by bacteria immobilized in polysaccharide gels. Prikl. Biokhim. Mikrobiol. 31(2), 220–223 (1995). (in Russian)

    CAS  PubMed  Google Scholar 

  33. Włodarczyk, P.P., Włodarczy, K.B.: Powering fuel cell with crude oil. J. Power Technol. 93(5), 394–396 (2013)

    Google Scholar 

  34. Włodarczyk, P.P., Włodarczyk, B.: Electrooxidation of diesel fuel in alkaline electrolyte. Infrastruct. Ecol. Rural Areas 4(1), 1071–1080 (2016)

    Google Scholar 

  35. Włodarczyk, P.P., Włodarczyk, B.: Electricity production from waste engine oil from agricultural machinery. Infrastruct. Ecol. Rural Areas 4(2), 1609–1618 (2017)

    Google Scholar 

  36. Holtzer, M., Staronka, A.: Chemia fizyczna. Wprowadzenie. Wydawnictwo AGH, Kraków (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł P. Włodarczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Włodarczyk, P.P., Włodarczyk, B. (2019). Electrooxidation of Sesame Oil in Acid Electrolyte. In: Krakowiak-Bal, A., Vaverkova, M. (eds) Infrastructure and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-16542-0_44

Download citation

Publish with us

Policies and ethics