Skip to main content

Ecological Functions of Vertebrate Scavenging

  • Chapter
  • First Online:
Book cover Carrion Ecology and Management

Part of the book series: Wildlife Research Monographs ((WIREMO,volume 2))

Abstract

Although the process of converting nutrients sequestered within carcasses has historically been portrayed as occurring at the detrital level, there is a growing consensus that vertebrate scavenging is pervasive among ecosystems across the globe. Throughout this chapter we highlight the central role scavenging plays in ecosystem functions such as nutrient cycling and transport within and among ecosystems, biodiversity maintenance, and disease transmission dynamics. Vertebrate scavenging of carrion also can create more stable food webs by promoting food web complexity, providing routes by which communities may sequester resources at higher trophic levels, and subsidizing populations of vertebrates during periods of food limitation. However, anthropogenic activities that directly alter vertebrate scavenging communities or shift the competitive balance among the various groups of organisms that utilize carrion may have cascading impacts within ecosystems and disrupt ecosystem services provided by carrion consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abernethy E, Turner K, Beasley JC et al (2016) Carcasses of invasive species are primarily utilized by invasive scavengers in an island ecosystem. Ecosphere 7:e01496

    Article  Google Scholar 

  • Allen ML, Elbroch LM, Wilmers CC, Wittmer HU (2014) Trophic facilitation or limitation? Comparative effects of pumas and black bears on the scavenger community. PLoS One 9:e102257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arjo WM, Pletscher DH (1999) Behavioral responses of coyotes to wolf recolonization in northwestern Montana. Can J Zool 77:1919–1927

    Article  Google Scholar 

  • Atwood TC, Gese EM (2008) Coyotes and recolonizing wolves: social rank mediates risk-conditional behaviour at ungulate carcasses. Anim Behav 75:753–762

    Article  Google Scholar 

  • Avery ML, Cummings JL (2004) Livestock depredations by black vultures and golden eagles. Sheep Goat Res J 19:58–63

    Google Scholar 

  • Bartholomew A, Bohnsack JA (2005) A review of catch-and-release angling mortality with implications for no-take reserves. Rev Fish Biol Fish 15:129–154

    Article  Google Scholar 

  • Barton PS, Cunningham SA, Lindenmayer DB, Manning AD (2013) The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171:761–772

    PubMed  Google Scholar 

  • Beard KH, Pitt WC, Price EA (2009) Biology and impacts of Pacific Island invasive species. 5. Eleutherodactylus coqui, the coqui frog (Anura: Leptodactylidae). Pac Sci 63:297–316

    Article  Google Scholar 

  • Beasley JC, Olson ZH, Dharmarajan G, Eagan TS II, Rhodes OE Jr (2011) Spatio-temporal variation the demographic attributes of a generalist mesopredator. Landsc Ecol 26:937–950

    Article  Google Scholar 

  • Beasley JC, Olson ZH, DeVault TL (2012) Carrion cycling in food webs: comparisons among terrestrial and marine ecosystems. Oikos 121:1021–1026

    Google Scholar 

  • Beasley JC, Olson ZH, Beatty WS, Dharmarajan G, Rhodes OE Jr (2013) Effects of culling on mesopredator populations dynamics. PLoS One 8:e58982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beasley JC, Olson ZH, DeVault TL (2015) Ecological role of vertebrate scavengers. In: Benbow ME, Tomberlin J, Tarone A (eds) Carrion ecology, evolution, and their application. CRC, Boca Raton, pp 107–128

    Chapter  Google Scholar 

  • Bellan SE, Turnbull PCB, Beyer W, Getz WM (2013) Effects of experimental exclusion of scavengers from carcasses of anthrax-infected herbivores on Bacillus anthracis sporulation, survival, and distribution. Appl Environ Microbiol 79:3756–3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benbow EM, Barton P, Ulyshen M, Beasley JC, DeVault TL, Strickland M, Tomberlin J, Jordan H, Pechal J (2019) Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol Monogr 89:e01331, pp. 1–29

    Article  Google Scholar 

  • Berger KM, Gese EM, Berger J (2008) Indirect effects and traditional trophic cascades: a test involving wolves, coyotes, and pronghorn. Ecology 89:818–828

    Article  PubMed  Google Scholar 

  • Braack LEO (1987) Community dynamics of carrion-attendant arthropods in tropical African woodland. Oecologia 72:402–409

    CAS  PubMed  Google Scholar 

  • Britton JC, Morton B (1994) Marine carrion and scavengers. Oceanogr Mar Biol Annu Rev 32:369–434

    Google Scholar 

  • Broadhurst MK, Suuronen P, Hulme A (2006) Estimating collateral mortality from towed fishing gear. Fish Fish 7:180–218

    Article  Google Scholar 

  • Buckley NJ (1999) Black vulture (Coragyps atratus). In: Poole A (ed) The birds of North America Online, Account 411. Cornell Lab of Ornithology, Ithaca, NY. http://bna.birds.cornell.edu.proxy-remote.galib.uga.edu/bna/species/411

    Google Scholar 

  • Bump JK, Webster CR, Vucetich JA, Peterson RO, Shields JM, Powers MD (2009a) Ungulate carcasses perforate ecological filters and create biogeochemical hotspots in forest herbaceous layers allowing trees a competitive advantage. Ecosystems 12:996–1007

    Google Scholar 

  • Bump JK, Peterson RO, Vucetich JA (2009b) Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90:3159–3167

    Article  PubMed  Google Scholar 

  • Butman CA, Carlton JT, Palumbi SR (1995) Whaling effects on deep-sea biodiversity. Conserv Biol 9:462–464

    Article  Google Scholar 

  • Byrd JH, Castner JL (2010) Forensic entomology: the utility of arthropods in legal investigations. CRC, Boca Raton

    Google Scholar 

  • Carbone C, Turvey ST, Bielby J (2011) Intra-guild competition and its implications for one of the biggest terrestrial predators, Tyrannosaurus rex. Proc R Soc B 278:2682–2690

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24

    Article  CAS  PubMed  Google Scholar 

  • Catchpole TL, Frid CLJ, Gray TS (2006) Importance of discards from the English Nephrops norvegicus fishery in the North Sea to marine scavengers. Mar Ecol Prog Ser 313:215–226

    Article  Google Scholar 

  • Cederholm CJ, Kunze MD, Murota T, Sibatani A (1999) Pacific salmon carcasses: essential contributions of nutrients and energy for aquatic and terrestrial ecosystems. Fisheries 24:6–15

    Article  Google Scholar 

  • Coe MJ (1978) The decomposition of elephant carcasses in the Tsavo (East) National Park, Kenya. J Arid Environ 1:71–86

    Article  Google Scholar 

  • Cohen JE (1978) Food webs and niche space. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Cohen JE, Briand F, Newman CM (1990) Community food webs: data and theory. Springer, New York

    Book  Google Scholar 

  • Collins C, Kays R (2011) Causes of mortality in North American populations of large and medium-sized mammals. Anim Conserv 14:474–483

    Article  Google Scholar 

  • Conover MR, Dinkins JB, Haney MJ (2013) Impacts of weather and accidents on wildlife. In: Wildlife management and conservation: contemporary principles and practices. Johns Hopkins University Press, Baltimore, MD, pp 144–155

    Google Scholar 

  • Cook RS (1993) Ecological issues on reintroducing wolves into Yellowstone National Park. US Department of the Interior, National Park Service Scientific Monograph

    Google Scholar 

  • Cornaby BW (1974) Carrion reduction by animals in contrasting tropical habitats. Biotropica 6:51–63

    Article  Google Scholar 

  • Cortés-Avizanda A, Selva N, Carrete M, Donázar JA (2009) Effects of carrion resources on herbivore spatial distribution are mediated by facultative scavengers. Basic Appl Ecol 10:265–272

    Article  Google Scholar 

  • Cortés-Avizanda A, Jovani R, Carrete M, Donázar JA (2012) Resource unpredictability promotes species diversity and coexistence in an avian scavenger guild: a field experiment. Ecology 93:2570–2579

    Article  PubMed  Google Scholar 

  • De Angelis DL (1975) Stability and connectance in food web models. Ecology 56:238–243

    Article  Google Scholar 

  • DeVault TL, Rhodes OE Jr, Shivik JA (2003) Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102:225–234

    Article  Google Scholar 

  • DeVault TL, Reinhart BD, Brisbin IL Jr, Rhodes OE Jr (2004) Home ranges of sympatric black and turkey vultures in South Carolina. Condor 106:706–711

    Article  Google Scholar 

  • DeVault TL, Olson ZH, Beasley JC, Rhodes OE Jr (2011) Mesopredators dominate competition for carrion in an agricultural landscape. Basic Appl Ecol 12:268–274

    Article  Google Scholar 

  • DeVault TL, Beasley JC, Olson ZH, Moleón M, Carrete M, Margalida A, Sánchez-Zapata JA (2016) Ecosystem services provided by avian scavengers. In: Şekercioğlu CH, Wenny DG, Whelan CJ (eds) Why do birds matter? Avian ecological function and ecosystem services. University of Chicago Press, pp 235–270

    Google Scholar 

  • DeVault TL, Seamans TW, Linnell KE, Sparks DW, Beasley JC (2017) Scavenger removal of bird carcasses at simulated wind turbines: Does carcass type matter? Ecosphere 8(11):e01994

    Article  Google Scholar 

  • Dobson AP (2014) Yellowstone wolves and the forces that structure natural systems. PLoS Biol 12:e1002025

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunne JA (2006) The network structure of food webs. In: Pascual M, Dunne JA (eds) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, Oxford, pp 27–86

    Google Scholar 

  • Dunne JA, Williams RJ, Martínez ND (2002) Food-web structure and network theory: the role of connectance and size. Proc Natl Acad Sci U S A 99:12917–12922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elton C (1927) Animal ecology. Sidgwick and Jackson, London

    Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fallows C, Gallagher AJ, Hammerschlag N (2013) White sharks (Carcharodon carcharias) scavenging on whales and its potential role in further shaping the ecology of an apex predator. PLoS One 8:e60797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farwig N, Brandl R, Siemann S, Wiener F, Müller J (2014) Decomposition rate of carrion is dependent on composition not abundance of the assemblages of insect scavengers. Oecologia 175:1291–1300

    Article  PubMed  Google Scholar 

  • Forman RTT, Sperling D, Bissonette JA, Clevenger AP, Cutshall CD, Dale VH, Fahrig L, France RL, Goldman CR, Haanue K, Jones J, Swanson F, Turrentine T, Winter TC (2003) Road ecology: science and solutions. Island Press, Washington

    Google Scholar 

  • Fuglei E, Øritsland NA, Prestrud P (2003) Local variation in arctic fox abundance on Svalbard, Norway. Polar Biol 26:93–98

    Google Scholar 

  • Gasaway WC, Mossestad KT, Stander PE (1991) Food acquisition by spotted hyenas in Etosha National Park, Namibia: predation versus scavenging. African J Ecol 29:64–75

    Article  Google Scholar 

  • Gende SM, Edwards RT, Willson MF, Wipfli MS (2002) Pacific salmon in aquatic and terrestrial ecosystems. Bioscience 52:917–928

    Article  Google Scholar 

  • Gende SM, Quinn TP, Hilborn R, Hendry AP, Dickerson B (2004) Brown bears selectively kill salmon with higher energy content but only in habitats that facilitate choice. Oikos 104:518–528

    Article  Google Scholar 

  • Gese EM, Ruff RL, Crabtree RL (1996) Foraging ecology of coyotes (Canis latrans): the influence of extrinsic factors and a dominance hierarchy. Can J Zool 74:769–783

    Article  Google Scholar 

  • Gooday AJ, Turley CM, Allen JA (1990) Responses by benthic organisms to inputs of organic material to the ocean floor: a review. Philos Trans R Soc Lond Ser B Biol Sci 331:119–138

    Article  CAS  Google Scholar 

  • Green GI, Mattson DJ, Peek JM (1997) Spring feeding on ungulate carcasses by grizzly bears in Yellowstone National Park. J Wildl Manag 61:1040–1055

    Article  Google Scholar 

  • Green RE, Newton I, Shultz S, Cunningham AA, Gilbert M, Pain DJ, Prakash V (2004) Diclofenac poisoning as a cause of vulture population declines across the Indian subcontinent. J Appl Ecol 41:793–800

    Article  CAS  Google Scholar 

  • Hanski I, Kuusela S (1980) The structure of carrion fly communities: differences in breeding seasons. Ann Zool Fenn 17:185–190

    Google Scholar 

  • Heinrich B, Pepper JW (1998) Influence of competitors on caching behavior in the common raven, Corvus corax. Anim Behav 56:1083–1090

    Article  CAS  PubMed  Google Scholar 

  • Helfield JM, Naiman RJ (2006) Keystone interactions: salmon and bear in riparian forests of Alaska. Ecosystems 9:167–180

    Article  Google Scholar 

  • Hertel F (1994) Diversity in body size and feeding morphology within past and present vulture assemblages. Ecology 75:1074–1084

    Article  Google Scholar 

  • Hill BJ, Wassenberg TJ (1990) Fate of discards from prawn trawlers in Torres strait. Aust J Marine Freshwater Res 41:53–64

    Article  Google Scholar 

  • Hill JE, DeVault TL, Beasley JC, Rhodes OE Jr, Belant JL (2018) Effects of vulture exclusion on carrion consumption by facultative scavengers. Ecol Evol 8(5):2518–2526

    Article  PubMed  PubMed Central  Google Scholar 

  • Hocking MD, Reynolds JD (2011) Impacts of salmon on riparian plant diversity. Science 331:1609–1612

    Article  CAS  PubMed  Google Scholar 

  • Hocking MD, Ring RA, Reimchen TE (2009) The ecology of terrestrial invertebrates on Pacific salmon carcasses. Ecol Res 24:1091–1100

    Article  Google Scholar 

  • Houston DB (1978) Elk as winter-spring food for carnivores in northern Yellowstone National Park. J Appl Ecol 15:653–661

    Article  Google Scholar 

  • Houston DC (1979) The adaptations of scavengers. In: Sinclair ARE, Griffiths NM (eds) Serengeti, dynamics of an ecosystem. University of Chicago Press, Chicago, pp 263–286

    Google Scholar 

  • Houston DB (1982) The northern Yellowstone elk: ecology and management. Macmillan, New York

    Google Scholar 

  • Houston D, Cooper J (1975) The digestive tract of the whiteback griffon vulture and its role in disease transmission among wild ungulates. J Wildl Dis 11:306–313

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson G (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Janzen D (1977) Why fruits rot, seeds mold, and meat spoils. Am Nat 111:691–713

    Article  CAS  Google Scholar 

  • Jędrzejewska B, Jędrzejewski W (1998) Predation in vertebrate communities. The Białowieża Primeval Forest as a case study. Springer, Berlin

    Book  Google Scholar 

  • Jędrzejewski W, Zalewski A, Jędrzejewska B (1993) Foraging by pine marten Martes martes in relation to food resources in Białowieża National Park, Poland. Acta Theriol 38:405–426

    Article  Google Scholar 

  • Jennelle C, Samuel MD, Nolden CA, Berkley EA (2009) Deer carcass decomposition and potential scavenger exposure to chronic wasting disease. J Wildl Manag 73:655–662

    Article  Google Scholar 

  • Johnson SB, Warén A, Lee RW, Kano Y, Kaim A, Davis A, Strong EE, Vrjenhoek RC (2010) Rubyspira, new genus and two new species of bone-eating deep-sea snails with ancient habits. Biol Bull 219:166–177

    Article  CAS  PubMed  Google Scholar 

  • Kaiser MJ, Moore PG (1999) Obligate marine scavengers: do they exist? J Nat Hist 33:475–481

    Article  Google Scholar 

  • Killengreen ST, Strømseng E, Yoccoz NG, Ims RA (2012) How ecological neighbourhoods influence the structure of the scavenger guild in low arctic tundra. Divers Distrib 18:563–574

    Article  Google Scholar 

  • Kirk DA, Mossman MJ (1998) Turkey vulture (Cathartes aura). Account 339 in Poole A (ed) The Birds of North America Online. Cornell Lab of Ornithology, Ithaca, NY. http://bna.birds.cornell.edu.proxy-remote.galib.uga.edu/bna/species/339

  • Kruuk H (1967) Competition for food between vultures in East Africa. Ardea 55:171–193

    Google Scholar 

  • Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web links. Proc Natl Acad Sci U S A 103:11211–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam K, Babor D, Duthie B, Babor EM, Moore M, Gries G (2007) Proliferating bacterial symbionts on house fly eggs affect oviposition behavior of adult flies. Ani Behav 74:81–92

    Article  Google Scholar 

  • Lawton J (1989) Food webs. In: Cherrett J (ed) Ecological concepts. Blackwell Scientific, Oxford, pp 43–78

    Google Scholar 

  • Levi T, Wheat RE, Allen JM, Wilmers CC (2015) Differential use of salmon by vertebrate consumers: implications for conservation. PeerJ 3:e1157. https://doi.org/10.7717/peerj.1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–417

    Article  Google Scholar 

  • Linnell JD, Ronny A, Reidar A (1995) Who killed bambi? The role of predation in the neonatal mortality of temperate ungulates. Wildl Biol 1:209–223

    Article  Google Scholar 

  • Longcore T, Rich C, Mineau P, MacDonald B, Bert DG, Sullivan LM, Mutrie M, Gauthreaux SA Jr, Avery ML, Crawford RL, Manville AM II, Travis ER, Drake D (2012) An estimate of avian mortality at communication towers in the United States and Canada. PLoS One 7:e34025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loss SR, Will T, Marra PP (2013a) The impact of free-ranging domestic cats on wildlife of the United States. Nat Commun 4:1396

    Article  PubMed  CAS  Google Scholar 

  • Loss SR, Will T, Marra PP (2013b) Estimates of bird collision mortality at wind facilities in the contiguous United States. Biol Conserv 168:201–209

    Article  Google Scholar 

  • Loss SR, Will T, Marra PP (2014a) Estimation of bird-vehicle collision mortality on U.S. roads. J Wildl Manag 78:763–771

    Article  Google Scholar 

  • Loss SR, Will T, Loss SS, Marra PP (2014b) Bird-building collisions in the United States: estimates of annual mortality and species vulnerability. Condor 116:8–23

    Article  Google Scholar 

  • Lowney MS (1999) Damage by black and turkey vultures in Virginia, 1990-1996. Wildl Soc Bull 27:715–719

    Google Scholar 

  • Magoun AJ (1976) Summer scavenging activity in northeastern Alaska. MS thesis, University of Alaska, Fairbanks

    Google Scholar 

  • Margalida A, Bertran J, Heredia R (2009) Diet and food preferences of the endangered Bearded Vulture Gypaetus barbatus: a basis for their conservation. Ibis 151:235–243

    Google Scholar 

  • Margalida A, Campión D, Donázar JA (2014) Vultures vs. livestock: conservation relationships in an emerging conflict between humans and wildlife. Oryx 48:172–176

    Article  Google Scholar 

  • Markandya A, Taylor T, Longo A, Murty MN, Murty S, Dhavala K (2008) Counting the cost of vulture decline—an appraisal of the human health and other benefits of vultures in India. Ecol Econ 67:194–204

    Article  Google Scholar 

  • Martínez ND (1991) Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecol Monogr 61:367–392

    Article  Google Scholar 

  • Mateo-Tomás P, Olea PP, Moleón M, Vicente J, Botella F, Selva N, Viñuela J, Sánchez-Zapata JA (2015) From regional to global patterns in vertebrate scavenger communities subsidized by big game hunting. Divers Distrib 21:913–924

    Article  Google Scholar 

  • May RM (1972) Will a large complex system be stable? Nature 238:413–414

    Article  CAS  PubMed  Google Scholar 

  • McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798

    Article  CAS  Google Scholar 

  • McKinnerney M (1978) Carrion communities in the northern Chihuahuan Desert. Southwest Nat 23:563–576

    Article  Google Scholar 

  • Melis C, Teurlings I, Linnell JDC, Andersen R, Bordoni A (2004) Influence of a deer carcass on Coleopteran diversity in a Scandinavian boreal forest: a preliminary study. Eur J Wildl Res 50:146–149

    Google Scholar 

  • Melis C, Selva N, Teurlings I, Skarpe C, Linnell JDC, Andersen R (2007) Soil and vegetation nutrient response to bison carcasses in Białowieża Primeval Forest, Poland. Ecol Res 22:807–813

    Article  CAS  Google Scholar 

  • Merkle JA, Stahler DA, Smith DW (2009) Interference competition between gray wolves and coyotes in Yellowstone National Park. Can J Zool 87:56–63

    Article  Google Scholar 

  • Moleón M, Sánchez-Zapata JA, Sebastián-González E, Owen-Smith N (2015) Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124:1391–1403

    Article  Google Scholar 

  • Moore JE, Swihart RK (2005) Modeling patch occupancy by forest rodents: incorporating detectability and spatial autocorrelation with hierarchically structured data. J Wildl Manag 69:933–949

    Article  Google Scholar 

  • Müller JK, Eggert AK, Dressel J (1990) Intraspecific brood parasitism in the burying beetle, Nicrophorus vespilloides (Coleoptera: Silphidae). Anim Behav 40:491–499

    Article  Google Scholar 

  • Neutel AM, Heesterbeek JA, de Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123

    Article  CAS  PubMed  Google Scholar 

  • Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BU, Shivaprasad HL, Ahmed S, Chaudhry MJI, Arshad M, Mahmood S, Ali A, Khan AA (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633

    Article  CAS  PubMed  Google Scholar 

  • Ogada DL, Keesing F, Virani MZ (2012a) Dropping dead: causes and consequences of vulture population declines worldwide. Ann N Y Acad Sci 1249:57–71

    Article  PubMed  Google Scholar 

  • Ogada DL, Torchin ME, Kinnaird MF, Ezenwa VO (2012b) Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv Biol 26:453–460

    Article  CAS  PubMed  Google Scholar 

  • Olson ZH, Beasley JC, DeVault TL, Rhodes OE Jr (2012) Scavenger community response to the removal of a dominant scavenger. Oikos 121:77–84

    Article  Google Scholar 

  • Olson ZH, Beasley JC, Rhodes OE Jr (2016) Carcass type affects local scavenger guilds more than habitat connectivity. PLoS One 11:e0147798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oro D, Genovart M, Tavecchia G, Fowler MS, Martínez-Abrain A (2013) Ecological and evolutionary implications of food subsidies from humans. Ecol Lett 16:1501–1514

    Article  PubMed  Google Scholar 

  • Pain DJ, Cunningham AA, Donald PF, Duckworth JW, Houston DC, Katzner T, Parry-Jones J, Poole C, Prakash V, Round P, Timmins R (2003) Causes and effects of temporospatial declines of Gyps vultures in Asia. Conserv Biol 17:661–671

    Article  Google Scholar 

  • Palomares F, Caro TM (1999) Interspecific killing among mammalian carnivores. Am Nat 153:492–508

    Article  CAS  PubMed  Google Scholar 

  • Parmenter R, MacMahon J (2009) Carrion decomposition and nutrient cycling in a semiarid shrub-steppe ecosystem. Ecol Monogr 79:637–661

    Article  Google Scholar 

  • Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602

    Article  Google Scholar 

  • Pechal JL, Benbow EM, Crippen TL, Tarone AM, Tomberlin JK (2014) Delayed insect access alters carrion decomposition and necrophagous insect community assembly. Ecosphere 5(4):45

    Article  Google Scholar 

  • Peterson RO, Vucetich JA, Bump JM, Smith DW (2014) Trophic cascades in a multicausal world: Isle Royale and Yellowstone. Annu Rev Ecol Evol Syst 45:325–345

    Article  Google Scholar 

  • Pimm SL (1982) Food webs. Chapman and Hall, New York

    Book  Google Scholar 

  • Polis GA (1991) Complex trophic interactions in deserts: an empirical critique of food-web theory. Am Nat 138:123–155

    Article  Google Scholar 

  • Prakash V, Pain DJ, Cunningham AA, Donald PF, Prakash N, Verma A, Gargi R, Sivakumar S, Rahmani AR (2003) Catastrophic collapse of Indian white-backed Gyps bengalensis and long-billed Gyps indicus vulture population. Biol Conserv 109:381–390

    Article  Google Scholar 

  • Prugh LR, Stoner CJ, Epps DW, Bean WR, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. Bioscience 59:779–791

    Article  Google Scholar 

  • Ramsay K, Kaiser MJ, Moore PG, Hughes RN (1997) Consumption of fisheries discards by benthic scavengers: utilization of energy subsidies in different marine habitats. J Anim Ecol 66:884–896

    Article  Google Scholar 

  • Restani M, Harmata AR, Madden EM (2000) Numerical and functional responses of migrant bald eagles exploiting a seasonally concentrated food source. Condor 102:561–568

    Article  Google Scholar 

  • Roggenbuck M, Schnell IB, Blom N, Baelum J, Bertelsen MF, Pontén TS, Sørensen SJ, Gilbert MTP, Graves GR, Hansen LH (2014) The microbiome of New World vultures. Nat Commun 5:5498

    Article  CAS  PubMed  Google Scholar 

  • Rooney TP, Waller DM (2003) Direct and indirect effects of white-tailed deer in forest ecosystems. For Ecol Manag 181:165–176

    Article  Google Scholar 

  • Rose MD, Polis GA (1998) The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea. Ecology 79:998–1007

    Article  Google Scholar 

  • Roth JD (2003) Variability in marine resources affects arctic fox population dynamics. J Anim Ecol 72:668–676

    Article  PubMed  Google Scholar 

  • Rouse GW, Goffredi SK, Vrijenhoek RC (2004) Osedax: Bone-eating marine worms with dwarf males. Science 305:668–671

    Article  CAS  PubMed  Google Scholar 

  • Ruxton GD, Bailey DM (2005) Searching speeds and the energetic feasibility of an obligate whale-scavenging fish. Deep Sea Res Part 1 Oceanogr Res Pap 52:1536–1541

    Article  Google Scholar 

  • Ruxton GD, Houston DC (2003) Could Tyrannosaurus rex have been a scavenger rather than a predator? An energetics approach. Proc R Soc Lond B Biol Sci 270:731–733

    Article  Google Scholar 

  • Ruxton GD, Houston DC (2004a) Obligate vertebrate scavengers must be large soaring fliers. J Theor Biol 228:431–436

    Article  PubMed  Google Scholar 

  • Ruxton GD, Houston DC (2004b) Energetic feasibility of an obligate marine scavenger. Mar Ecol Prog Ser 266:59–63

    Article  Google Scholar 

  • Schlichting PE, Love CN, Webster SC, Beasley JC (2019) Efficiency and composition of vertebrate scavengers at the land-water interface in the Chernobyl Exclusion Zone. Food Webs 18:e00107

    Article  Google Scholar 

  • Schmitz OJ, Hambäck PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of top carnivore removals on plants. Am Nat 155:141–153

    Article  PubMed  Google Scholar 

  • Sebastián-González M, Sánchez-Zapata JA, Donazar JA, Selva N, Cortéz-Avizanda A, Hiraldo F, Blázquez M, Botella F, Moleón M (2013) Interactive effects of obligate scavengers and scavenger community richness on lagomorph carcass consumption patterns. Ibis 155:881–885

    Article  Google Scholar 

  • Sebastián-González E, Moleón M, Gibert JP, Botella F, Mateo-Tomás P, Olea PP, Guimarães PR Jr, Sánchez-Zapata JA (2016) Nested species-rich networks of scavenging vertebrates support high levels of interspecific competition. Ecology 97:95–105

    Article  PubMed  Google Scholar 

  • Selva N (2004a) The role of scavenging in the predator community of Białowieża Primeval Forest (E Poland). PhD thesis, University of Sevilla, Spain

    Google Scholar 

  • Selva N (2004b) Life after death – scavenging on ungulate carcasses. In: Jędrzejewska B, Wójcik JM (eds) Essays on mammals of Białowieża Forest. Mammal Research Institute, PAS, Białowieża, pp 59–68

    Google Scholar 

  • Selva N, Fortuna MA (2007) The nested structure of a scavenger community. Proc R Soc Lond B Biol Sci 274:1101–1108

    Article  Google Scholar 

  • Selva N, Jȩdrzejewska B, Jȩdrzejewski W, Wajrak A (2003) Scavenging on European bison carcasses in Bialowieza Primeval Forest (eastern Poland). Ecoscience 10:303–311

    Article  Google Scholar 

  • Selva N, Jȩdrzejewska B, Jȩdrzejewski W, Wajrak A (2005) Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can J Zool 83:1590–1601

    Article  Google Scholar 

  • Shivik JA (2006) Are vultures birds, and do snakes have venom, because of macro- and microscavenger conflict? Bioscience 56:819–823

    Article  Google Scholar 

  • Shivik JA, Clark L (1999) Ontogenetic shifts in carrion attractiveness to brown tree snakes (Boiga irregularis). J Herpetol 33:334–336

    Article  Google Scholar 

  • Sikes DS (1994) Influences of ungulate carcasses on coleopteran communities in Yellowstone National Park, USA. MS thesis, Montana State University, Montana

    Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Annu Rev 41:311–354

    Google Scholar 

  • Smith DW, Peterson RO, Houston DB (2003) Yellowstone after Wolves. Bioscience 53:330–340

    Article  Google Scholar 

  • Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Arbizu PM (2008) Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol 23:518–528

    Article  PubMed  Google Scholar 

  • Stahler D, Heinrich B, Smith D (2002) Common ravens, Corvus corax, preferentially associate with grey wolves, Canis lupus, as a foraging strategy in winter. Anim Behav 64:283–290

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford

    Google Scholar 

  • Switalski TA (2003) Coyote foraging ecology and vigilance in response to gray wolf reintroduction in Yellowstone National Park. Can J Zool 81:985–993

    Article  Google Scholar 

  • Tamburri MN, Barry JP (1999) Adaptations for scavenging by three diverse bathyla species, Eptatretus stouti, Neptunea amianta and Orchomene obtusus. Deep Sea Res 46(Pt 1):2079–2093

    Article  Google Scholar 

  • Tilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77:350–363

    Article  Google Scholar 

  • Tomberlin JK, Sheppard DC, Joyce JA (2005) Black soldier fly (Diptera: Stratiomyidae) colonization of pig carrion in South Georgia. J Forensic Sci 50:JFS2003391-2

    Google Scholar 

  • Towne EG (2000) Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122:232–239

    Article  CAS  PubMed  Google Scholar 

  • Turner KL, Abernethy EF, Conner LM, Rhodes OE Jr, Beasley JC (2017) Abiotic and biotic factors modulate carrion fate and scavenging community dynamics. Ecology 98:2413–2424

    Article  PubMed  Google Scholar 

  • VanLaerhoven S (2010) Ecological theory and its application in forensic entomology. In: Byrd J, Castner J (eds) Forensic entomology: the utility of arthropods in legal investigations. CRC Press, Boca Raton, pp 493–518

    Google Scholar 

  • VerCauteren KC, Pilon JL, Nash PB, Phillips GE, Fischer JW (2012) Prion remains infectious after passage through digestive system of American crows (Corvus brachyrhynchos). PLoS One 7:e45774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Wasserman S, Faust K (1994) Social network analysis: Methods and applications, vol 8. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Whitaker JO Jr, Mumford RE (2010) Mammals of Indiana. Revised an. Indiana University Press, Bloomington

    Google Scholar 

  • Wikenros C, Sand H, Ahlqvist P, Liberg O (2013) Biomass flow and scavengers use of carcasses after re-colonization of an apex predator. PLoS One 8(10):e77373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilmers CC, Getz WM (2004) Simulating the effects of wolf-elk population dynamics on resource flow to scavengers. Ecol Model 177:193–208

    Article  Google Scholar 

  • Wilmers CC, Getz WM (2005) Gray wolves as climate change buffers in Yellowstone. PLoS Biol 3:e92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilmers CC, Crabtree RL, Smith DW, Murphy KM, Getz WM (2003a) Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park. J Anim Ecol 72:909–916

    Article  Google Scholar 

  • Wilmers CC, Stahler DR, Crabtree RL, Smith DW, Getz WM (2003b) Resource dispersion and consumer dominance: scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecol Lett 6:996–1003

    Article  Google Scholar 

  • Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol 26:129–135

    Article  PubMed  Google Scholar 

  • Yang LH (2004) Periodical cicadas as resource pulses in North American forests. Science 306:1565–1567

    Article  CAS  PubMed  Google Scholar 

  • Zalewski A (2000) Factors affecting the duration of activity by pine martens (Martes martes) in the Białowieża National Park, Poland. J Zool 251:439–447

    Google Scholar 

  • Zalewski A, Jędrzejewski W, Jędrzejewska B (1995) Pine marten home ranges, numbers and predation on vertebrates in a deciduous forest (Białowieża National Park, Poland). Ann Zool Fenn 32:131–144

    Google Scholar 

  • Zheng L, Crippen TL, Holmes L, Singh B, Pimsler ML, Benbow ME, Tarone AM, Dowd S, Yu Z, Vanlaerhoven SL, Wood TK, Tomberlin JK (2013) Bacteria mediate oviposition by the black soldier fly, Hermetia illucens (L.), (Diptera: Stratiomyidae). Sci Reports 3:2563

    Article  Google Scholar 

Download references

Acknowledgements

Contributions of James Beasley were partially supported by the U.S. Department of Energy under Award Number DE-EM0004391 to the University of Georgia Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Beasley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beasley, J.C., Olson, Z.H., Selva, N., DeVault, T.L. (2019). Ecological Functions of Vertebrate Scavenging. In: Olea, P., Mateo-Tomás, P., Sánchez-Zapata, J. (eds) Carrion Ecology and Management. Wildlife Research Monographs, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-16501-7_6

Download citation

Publish with us

Policies and ethics