Skip to main content

Personalized Medicine in Ophthalmology: Treatment of Total Limbal Stem Cell Deficiency with Autologous Ex Vivo Cultivated Limbal Epithelial Stem Cell Graft

  • Chapter
  • First Online:
Personalized Medicine in Healthcare Systems

Part of the book series: Europeanization and Globalization ((EAG,volume 5))

  • 649 Accesses

Abstract

Most of the blinding corneal diseases are treatable by corneal transplantation in which a corneal allograft is used. However, in severe corneal burns that often result in total limbal epithelial stem cell (LECS) deficiency, corneal transplantation alone is not feasible, as corneal graft in eyes without stem cells cannot survive. Total LESC deficiency is clinically characterized by growth of conjunctival tissue over the cornea, corneal neovascularization and opacification. It unfortunately affects mostly younger population. Two decades ago, it has been shown that a successful corneal graft in patients with corneal burns can only be performed as a second surgical act; namely only after transplantation of limbal stem cells cultivated ex vivo have restored a healthy anterior ocular surface. Cultivation of LESC ex vivo has been adopted as treatment of choice for such cases. Various carriers of LESC in vitro has been tested and clinically applied, such as fibrin, amniotic membrane and contact lens. LESC samples for cultivation in vitro can be autologous grafts harvested from the contralateral healthy eye (if only one eye has corneal burn), or allografts retrieved from a healthy relative or donor corneo-scleral rim. The most effective way of treatment is collection of healthy LESC from patient’s healthy eye, their multiplication ex vivo on certain carrier and final grafting of cultivated epithelial sheet on the diseased eye of the same patient. Transplantation of such LESC becomes a personalized ocular treatment as epithelial sheet of cells must be cultivated for each particular patient. Other sources of LESC for ex vivo cultures, such as allografts, are significantly less successful and has disadvantage that the patient must receive systemic immunosuppressive treatment with unwanted side-effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pellegrini et al. (1997).

  2. 2.

    Schwab et al. (2000), Rama et al. (2001) and Grueterich et al. (2003).

  3. 3.

    Rama et al. (2010) and Sangwan et al. (2011).

  4. 4.

    Pellegrini et al. (2001).

  5. 5.

    Di Iorio et al. (2005) and Schlötzer-Schrehardt and Kruse (2005).

  6. 6.

    Dhamodaran et al. (2015).

  7. 7.

    Chen and Tseng (1991) and Dua et al. (2003).

  8. 8.

    Kenyon and Tseng (1989) and Puangsricharern and Tseng (1995).

  9. 9.

    Kenyon and Tseng (1989) and Tsai et al. (2000).

  10. 10.

    Schwab (1999), Schwab et al. (2000) and James et al. (2001).

  11. 11.

    Lindberg et al. (1993), Koizumi et al. (2000) and Meller et al. (2002).

  12. 12.

    Pellegrini et al. (1997).

  13. 13.

    Sidney et al. (2015) and López-Paniagua et al.(2016).

  14. 14.

    Shimazaki et al. (2002), Zakaria et al. (2010), González et al. (2016) and Bobba et al. (2015).

  15. 15.

    Pathak et al. (2013) and O’Callaghan et al. (2016).

  16. 16.

    Dobrowolski et al. (2015) and Utheim (2015).

  17. 17.

    Priya et al. (2011).

  18. 18.

    Ahmadet al. (2007), Ho et al. (2011), Holan et al. (2015) and Brzeszczynska et al. (2014).

  19. 19.

    Dekaris and Gabrić (2009).

  20. 20.

    Tominac Trcin et al. (2016).

  21. 21.

    Tominac Trcin et al. (2016).

References

  • Ahmad S, Stewart R, Yung S et al (2007) Differentiation of human embryonicstem cellsinto corneal epithelial-likecellsby in vitro replication of the corneal epithelialstemcell niche. Stem Cells 25(5):1145–1155

    Article  Google Scholar 

  • Bobba S, Chow S, Watson S et al (2015) Clinical outcomes of xeno-free expansion and transplantation of autologous ocular surface epithelial stem cells via contact lens delivery: a prospective case series. Stem Cell Res Ther 6:23. https://doi.org/10.1186/s13287-015-0009-1

    Article  Google Scholar 

  • Brzeszczynska J, Samuel K, Greenhough S et al (2014) Differentiation and molecular profiling ofhumanembryonicstemcell-derived corneal epithelialcells. Int J Mol Med 33(6):1597–1606. https://doi.org/10.3892/ijmm.2014.1714

    Article  Google Scholar 

  • Chen JJ, Tseng SC (1991) Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Invest Ophthalmol Vis Sci 32(8):2219–2233

    Google Scholar 

  • Dekaris I, Gabrić N (2009) Preparation and preservation of amniotic membrane. Dev Ophthalmol 43:97–104

    Article  Google Scholar 

  • Dhamodaran K, Subramani M, Jeyabalan N et al (2015) Characterization of ex vivo cultured limbal, conjunctival, and oral mucosal cells: a comparative study with implications in transplantation medicine. Mol Vis 21:828–845. eCollection 2015

    Google Scholar 

  • Di Iorio E, Barbaro V, Ruzza A et al (2005) Isoforms of DeltaNp63 and the migration of ocularlimbalcellsin human corneal regeneration. Proc Natl Acad Sci U S A 102(27):9523–9528

    Article  Google Scholar 

  • Dobrowolski D, Orzechowska-Wylegala B, Wowra B et al (2015) Cultivated oral mucosa epithelium in ocular surface reconstruction in aniridia patients. Biomed Res Int 281870. https://doi.org/10.1155/2015/281870

    Article  Google Scholar 

  • Dua HS, Joseph A, Shanmuganathan VA et al (2003) Stem cell differentiation and the effects of deficiency. Eye (London) 17(8):877–885

    Article  Google Scholar 

  • González S, Mei H, Nakatsu MN et al (2016) A 3D culture system enhances the ability of human bone marrow stromal cells to support the growth of limbal stem/progenitor cells. Stem Cell Res 16(2):358–364. https://doi.org/10.1016/j.scr.2016.02.018

    Article  Google Scholar 

  • Grueterich M, Espana EM, Tseng SC (2003) Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol 48(6):631–646

    Article  Google Scholar 

  • Ho JH, Ma WH, Tseng TC et al (2011) Isolation and characterization of multi-potent stem cells from human orbital fat tissues. Tissue Eng A 17(1–2):255–266. https://doi.org/10.1089/ten.TEA.2010.0106

    Article  Google Scholar 

  • Holan V, Trosan P, Cejka C et al (2015) A comparative study of the therapeutic potential of mesenchymalstem cellsandlimbalepithelialstem cellsfor ocular surface reconstruction. Stem Cells Transl Med 4(9):1052–1063. https://doi.org/10.5966/sctm.2015-0039

    Article  Google Scholar 

  • James SE, Rowe A, Ilari L et al (2001) The potential for eye bank limbal rings to generate cultured corneal epithelial allografts. Cornea 20(5):488–494

    Article  Google Scholar 

  • Kenyon KR, Tseng SC (1989) Limbalautograft transplantation for ocular surface disorders. Ophthalmology 96(5):709–722; discussion 722-3

    Article  Google Scholar 

  • Koizumi N, Inatomi T, Quantock AJ et al (2000) Amniotic membrane as a substrate for cultivating limbal corneal epithelial cells for autologous transplantation in rabbits. Cornea 19(1):65–71

    Article  Google Scholar 

  • Lindberg K, Brown ME, Chaves HV et al (1993) Towards therapeutic application of ocular stem cells. Invest Ophthalmol Vis Sci 34(9):2672–2679

    Google Scholar 

  • López-Paniagua M, Nieto-Miguel T, de la Mata A et al (2016) Successful consecutive expansion oflimbalexplants using a biosafe culture medium under feeder layer-free conditions. Curr Eye Res 2:1–11

    Google Scholar 

  • Meller D, Pires RT, Tseng SC (2002) Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. J Ophthalmol 86(4):463–471

    Google Scholar 

  • O’Callaghan AR, Morgan L, Daniels JT et al (2016) Human-derived feeder fibroblasts for the culture of epithelial cells for clinical use. J Tissue Eng Regen Med 11(6):529–543. https://doi.org/10.2217/rme-2016-0039

    Article  Google Scholar 

  • Pathak M, Cholidis S, Haug K et al (2013) Clinical transplantation of ex vivo expanded autologous limbal epithelial cells using a culture medium with human serum as single supplement: a retrospective case series. Acta Ophthalmol 91(8):769–775. https://doi.org/10.1111/j.1755-3768.2012.02521.x

    Article  Google Scholar 

  • Pellegrini G, Traverso CE, Franzi AT et al (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349(9057):990–993

    Article  Google Scholar 

  • Pellegrini G, Dellambra E, Golisano O et al (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A 98(6):3156–3161

    Article  Google Scholar 

  • Priya CG, Arpitha P, Vaishali S et al (2011) Adult human buccal epithelialstem cells: identification, ex-vivo expansion, and transplantation for corneal surface reconstruction. Eye (London) 25(12):1641–1649. https://doi.org/10.1038/eye.2011.230

    Article  Google Scholar 

  • Puangsricharern V, Tseng SC (1995) Cytologic evidence of corneal diseases withlimbalstem cell deficiency. Ophthalmology 102(10):1476–1485

    Article  Google Scholar 

  • Rama P, Bonini S, Lambiase A et al (2001) Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72(9):1478–1485

    Article  Google Scholar 

  • Rama P, Matuska S, Paganoni G et al (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363(2):147–155. https://doi.org/10.1056/NEJMoa0905955

    Article  Google Scholar 

  • Sangwan VS, Basu S, Vemuganti GK et al (2011) Clinicaloutcomes of xeno-free autologous cultivatedlimbalepithelial transplantation: a 10-year study. J Ophthalmol 95(11):1525–1529. https://doi.org/10.1136/bjophthalmol-2011-300352

    Article  Google Scholar 

  • Schlötzer-Schrehardt U, Kruse FE (2005) Identification and characterization oflimbalstem cells. Exp Eye Res 81(3):247–264

    Article  Google Scholar 

  • Schwab IR (1999) Cultured corneal epithelia for ocular surface disease. Trans Am Ophthalmol Soc 97:891–986

    Google Scholar 

  • Schwab IR, Reyes M, Isseroff RR (2000) Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea 19(4):421–426

    Article  Google Scholar 

  • Shimazaki J, Aiba M, Goto E et al (2002) Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology 109(7):1285–1290

    Article  Google Scholar 

  • Sidney LE, Branch MJ, Dua HS et al (2015) Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells. Cytotherapy 17(12):1706–1722. https://doi.org/10.1016/j.jcyt.2015.08.003

    Article  Google Scholar 

  • Tominac Trcin M, Dekaris I, Mijović B, Bujić M, Zdraveva E, Dolenec T, Pauk-Gulić M, Primorac D, Crnjac J, Špoljarić B, Mršić G, Kuna K, Špoljarić D, Popović M (2016) Synthetic vs natural scaffolds for human limbal stem cells. Croat Med J 56(3):246–256

    Article  Google Scholar 

  • Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343(2):86–93

    Article  Google Scholar 

  • Utheim TP (2015) Concise review: transplantation of cultured oral mucosal epithelial cells for treating limbal stem cell deficiency-current status and future perspectives. Stem Cell 33(6):1685–1695. https://doi.org/10.1002/stem.1999

    Article  Google Scholar 

  • Zakaria N, Koppen C, Van Tendeloo V et al (2010) Standardized limbal epithelial stem cell graft generation and transplantation. Tissue Eng C Methods 16(5):921–927. https://doi.org/10.1089/ten.TEC.2009.0634

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dekaris, I., Tominac-Trcin, M., Gabrić, N., Mijović, B., Pašalić, A. (2019). Personalized Medicine in Ophthalmology: Treatment of Total Limbal Stem Cell Deficiency with Autologous Ex Vivo Cultivated Limbal Epithelial Stem Cell Graft. In: Bodiroga-Vukobrat, N., Rukavina, D., Pavelić, K., Sander, G.G. (eds) Personalized Medicine in Healthcare Systems. Europeanization and Globalization, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-16465-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16465-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16464-5

  • Online ISBN: 978-3-030-16465-2

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics