Skip to main content

Microbially Synthesized Biomagnetic Nanomaterials

  • Chapter
  • First Online:
Book cover Magnetic Nanostructures

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 1009 Accesses

Abstract

Magnetic nanoparticles (MNPs) received special importance at least the last two decades, mainly due to their magnetic properties. Biological sources which include microorganism, algae fungi, and plants have been employed for the production of low-price, strength-green, and risk-free environmental metallic nanoparticles. Microbial synthesis is an emerging and frontier technique for biological synthesizing MNPs. Low price, sustainability, non-toxicity, and simplicity are commonplace blessings shared with the aid of green synthesis procedures in the manufacturing’s direction of MNPs. This chapter presents an excellent status view of some investigations of microbially synthesized magnetic nanomaterials. Further, this report explains about the biogenic synthesis of supramagnetite nanoparticles (Fe3O4-NPs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeen S, Isaac RR, Geo S, Sornalekshmi S, Rose A, Praseetha PK (2013) Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. on Human Pathogens. Nano Biomed Eng 5(1):39–45

    Article  CAS  Google Scholar 

  • Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Fungal Nanobionics: Principles and Applications (eds. Prasad R, Kumar V, Kumar M and Wang S), Springer Singapore Pte Ltd. 61–87

    Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824

    Article  CAS  Google Scholar 

  • Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–6

    Article  CAS  PubMed  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali I, Peng C, Lin D, Naz I (2018) Green synthesis of the innovative super paramagnetic nanoparticles from the leaves extract of Fraxinus chinensis Roxb and their application for the decolourisation of toxic dyes. Green Processing Synth 8:256. https://doi.org/10.1515/gps-2018-0078

    Article  CAS  Google Scholar 

  • Alqudami A, Annapoorni S (2007) Fluorescence from metallic silver and iron nanoparticles prepared by exploding wire technique. Plasmonics 2(1):5–13

    Article  CAS  Google Scholar 

  • Apte M, Girme G, Bankar A, RaviKumar A, Zinjarde S (2013) 3, 4-dihydroxy-L-phenylalanine-derived melanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures. J Nanobiotechnol 11(1):2

    Article  CAS  Google Scholar 

  • Arulpandi I, Kanimozhi S (2015) Characterization and cytotoxicity evaluation of superparamagnetic nanoparticles biosynthesized by Fusarium oxysporum SK. Int J Pharm Sci Res 6(1):376

    Google Scholar 

  • Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B 103:283–297

    Article  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Baba K, Kaneko T, Hatakeyama R (2009) Efficient synthesis of gold nanoparticles using ion irradiation in gas–liquid interfacial plasmas. Appl Phys Express 2(3):035006

    Article  CAS  Google Scholar 

  • Baker RA, Tatum JH (1998) Novel anthraquinones from stationary cultures of Fusarium oxysporum. J Biosci Bioeng 85(4):359–361

    CAS  Google Scholar 

  • Bankar A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated novel route for the synthesis of silver. Colloids Surf A Physicochem Eng Asp 368:58–63

    Article  CAS  Google Scholar 

  • Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334:518

    Article  Google Scholar 

  • Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf B Biointerfaces 71(1):113–118

    Article  CAS  PubMed  Google Scholar 

  • Bellini S (1963a) Further studies on “magnetosensitive bacteria.” Instit Microbiol University of Pavia, Italy. http://www.calpoly.edu/~rfrankel/SBellini2.pdf. Cal Poly. Accessed 5 May 2009

  • Bellini SJ (1963b) About a unique behavior of freshwater bacteria. Instit Microbiol. http://www.calpoly.edu/~rfrankel/SBellini1.pdf. Cal Poly. Accessed 21 Apr 2009

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2(1):135–141

    Article  CAS  PubMed  Google Scholar 

  • Bharde AA, Parikh RY, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad BL, Shouche YS, Ogale S, Sastry M (2008) Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24(11):5787–5794

    Article  CAS  PubMed  Google Scholar 

  • Blackwell M (2011) The Fungi: 1, 2, 3… 5.1 million species? Am J Bot 98(3):426–438

    Article  PubMed  Google Scholar 

  • Blakemore R (1975) Magnetotactic bacteria. Science 190(4212):377–379

    Article  CAS  PubMed  Google Scholar 

  • Boroumand Moghaddam A, Namvar F, Moniri M, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20(9):16540–16565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose S, Hochella MF Jr, Gorby YA, Kennedy DW, McCready DE, Madden AS, Lower BH (2009) Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim Cosmochim Acta 73(4):962–976

    Article  CAS  Google Scholar 

  • Botham KM, Mayes PA (2006) Biologic oxidation. In: Harper’s illustrared biochemistry, 28th edn. Lange-McGraw Hill, London, p 47

    Google Scholar 

  • Brayner R, Yéprémian C, Djediat C, Coradin T, Herbst F, Livage J, Fiévet F, Couté A (2009) Photosynthetic microorganism-mediated synthesis of (β-FeOOH) nanorods. Langmuir 25(17):10062–10067

    Google Scholar 

  • Chan S (2012) Instantaneous biosynthesis of silver nanoparticles (AgNPs) by selected macro fungi. Aust J Basic Appl Sci 6(1):222–226

    CAS  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog 22(2):577–583

    Article  CAS  PubMed  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, Weinheim, p 17

    Book  Google Scholar 

  • Cummings DE, Caccavo F Jr, Spring S, Rosenzweig RF (1999) Ferribacterium limneticum, gen. nov., sp. nov., an Fe (III)–reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 171(3):183–188

    Article  CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338(6216):596

    Article  CAS  Google Scholar 

  • Davis SA, Patel HM, Mayes EL, Mendelson NH, Franco G, Mann S (1998) Brittle bacteria: a biomimetic approach to the formation of fibrous composite materials. Chem Mater 10(9):2516–2524

    Article  CAS  Google Scholar 

  • Devi LS, Joshi SR (2015) Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastruct 3(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32(1):49–73

    Article  CAS  PubMed  Google Scholar 

  • Dobson J (2006) Magnetic micro- and nano-particle-based targeting for drug and Gene delivery. Nanomedicine 1:31–37

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Marcato PD, Alves OL, De Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(1):8

    Article  Google Scholar 

  • Elblbesy MA, Madbouly AK, Hamdan TA (2014) Bio-synthesis of magnetite nanoparticles by bacteria. Am J Nano Res Appl 2(5):98–103

    Google Scholar 

  • Elcey C, Kuruvilla AT, Thomas D (2014) Synthesis of magnetite nanoparticles from optimized iron reducing bacteria isolated from iron ore mining sites. Int J Curr Microbiol Appl Sci 3:408–417

    CAS  Google Scholar 

  • El-Kassas HY, Aly-Eldeen MA, Gharib SM (2016) Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: characterization and application for lead bioremediation. Acta Oceanol Sin 35(8):89–98

    Article  CAS  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater 2(3):243–247

    Article  Google Scholar 

  • Gan PP, Ng SH, Huang Y, Yau SS (2012) Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. CESE 113:132–135

    CAS  Google Scholar 

  • Gawande MB, Branco PS, Varma RS (2013) Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42(8):3371–3393

    Article  CAS  PubMed  Google Scholar 

  • Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M (2014) Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98(19):8083–8097

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan K, Ramesh C, Ragunathan V, Thamilselvan M (2012) Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline. Dig J Nanomater Bios 7(2):833–839

    Google Scholar 

  • Haw CY, Mohamed F, Chia CH, Radiman S, Zakaria S, Huang NM, Lim HN (2010) Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceram Int 36(4):1417–1422

    Article  CAS  Google Scholar 

  • Hawksworth DL, Lucking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5(4). https://doi.org/10.1128/microbiolspec.FUNK-0052-2016

  • Herlin-Boime N, Sublemontier O, Lacour F (2012) inventors; Commissariat a l’Energie Atomique et aux Energies Alternatives, assignee. Synthesis of silicon nanocrystals by laser pyrolysis. United States patent US 8,337,673. Dec 25

    Google Scholar 

  • Herrera-Becerra R, Zorrilla C, Rius JL, Ascencio JA (2008) Electron microscopy characterization of biosynthesized iron oxide nanoparticles. Appl Phys A 91(2):241–246

    Article  CAS  Google Scholar 

  • Hu FQ, Wei L, Zhou Z, Ran YL, Li Z, Gao MY (2006) Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater 18(19):2553–2556

    Article  CAS  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104

    Article  CAS  Google Scholar 

  • Hulkoti NI, Taranath T (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B Biointerfaces 121:474–483

    Article  CAS  PubMed  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–26350

    Article  CAS  Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices 2014:359316

    PubMed  PubMed Central  Google Scholar 

  • Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinus eldarica bark extract. Biomed Res Int 2013:639725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha AK, Prasad K (2009) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43(3):303–306

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2010) Ferroelectric BaTiO3 nanoparticles, biosynthesis and characterization. Colloids Surf B Biointerfaces 75(1):330–334

    Article  CAS  PubMed  Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154(7):466–473

    Article  CAS  PubMed  Google Scholar 

  • Jun W, Jingjun S, Qian S, Qianwang C (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38:1113–1118

    Article  CAS  Google Scholar 

  • Karade VC, Waifalkar PP, Dongle TD, Sahoo SC, Kollu P, Patil PS, Patil PB (2017) Greener synthesis of magnetite nanoparticles using green tea extract and their magnetic properties. Mater Res Express 4(9):096102

    Article  CAS  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myconanotechnology in agriculture: a perspective World. J Microbiol Biotechnol 29(2):191–207

    Article  CAS  Google Scholar 

  • Kasthuri J, Kathiravan K, Rajendiran N (2009) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanoparticl Res 11(5):1075–1085

    Article  CAS  Google Scholar 

  • Kaul RK, Kumar P, Burman U, Joshi P, Agrawal A, Raliya R, Tarafdar JC (2012) Magnesium and iron nanoparticles production using microorganisms and various salts. Mater Sci–Poland 30(3):254–258

    Article  CAS  Google Scholar 

  • Kavitha AL, Prabu HG, Babu SA, Suja SK (2013) Magnetite nanoparticles-chitosan composite containing carbon paste electrode for glucose biosensor application. J Nanosci Nanotechnol 13(1):98–104

    Article  CAS  PubMed  Google Scholar 

  • Khan MY, Mangrich AS, Schultz J, Grasel FS, Mattoso N, Mosca DH (2015) Green chemistry preparation of superparamagnetic nanoparticles containing Fe3O4 cores in biochar. J Anal Appl Pyrolysis 116:42–48

    Article  CAS  Google Scholar 

  • Kim S, Kim JH, Jeon O (2009) Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm 71(3):420–430

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84(2):151–157

    Article  CAS  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3):439–445

    Article  CAS  Google Scholar 

  • Kumar D, Karthik L, Kumar G, Roa KB (2011) Biosynthesis of silver anoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacologyonline 3:1100–1111

    Google Scholar 

  • Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, Toprak MS, Buerki-Thurnherr T, Laurent S, Vahter M, Krug H (2011) Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol 253(2):81–93

    Article  CAS  PubMed  Google Scholar 

  • Lang C, Schüler D (2006) Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J Phys Condens Matter 18(38):2815

    Article  CAS  Google Scholar 

  • Lee SW, Mao C, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296(5569):892–895

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Purdon AM, Chu V, Westervelt RM (2004) Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Lett 4(5):995–998

    Article  CAS  Google Scholar 

  • Lee JH, Roh Y, Hur HG (2008) Microbial production and characterization of superparamagnetic magnetite nanoparticles by Shewanella sp. HN-41. J Microbiol Biotechnol 18(9):1572–1577

    CAS  PubMed  Google Scholar 

  • Leela A, Vivekanandan M (2008) Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr J Biotechnol 7(17):3162–3165

    Google Scholar 

  • Lefever CT, Abreu F, Schmidt ML, Lins U, Frankel RB, Hedlund BP, Bazylinski DA (2010) Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl Environ Microbiol 76(11):3740–3743

    Article  CAS  Google Scholar 

  • Lehtinen KE, Backman U, Jokiniemi JK, Kulmala M (2004) Three-body collisions as a particle formation mechanism in silver nanoparticle synthesis. J Colloid Interface Sci 274(2):526–530

    Article  CAS  PubMed  Google Scholar 

  • LewisOscar F, Vismaya S, Arunkumar M, Thajuddin N, Dhanasekaran D, Nithya C (2016) Algal nanoparticles: synthesis and biotechnological potentials. In: Algae-organisms for imminent biotechnology. InTech

    Google Scholar 

  • Li ZQ, Chen ZM (2007) Preparation characterization and application of nano magnetic polymer materials. J Chem Ind Times 21(6):57–60

    Google Scholar 

  • Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X (2013) Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34(33):8382–8392

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Qin G, Raveendran P, Ikushima Y (2006) Facile “green” synthesis, characterization, and catalytic function of β-D-glucose-stabilized Au nanocrystals. Chem Eur J 12(8):2131–2138

    Article  PubMed  Google Scholar 

  • Logeswari P, Silambarasan S, Abraham J (2013) Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Sci Iran 20(3):1049–1054

    Google Scholar 

  • Longoria EC, Velasquez SM, Nestor AV, Berumen EA, Borja MA (2012) Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. Microb Biotechnol 22(7):1000–1004

    Article  CAS  Google Scholar 

  • Lovley DR, Chapelle FH, Phillips EJ (1990) Fe (III)–reducing bacteria in deeply buried sediments of the Atlantic Coastal Plain. Geology 18(10):954–957

    Article  CAS  Google Scholar 

  • Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013a) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZ, Amin J (2013b) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18(7):7533–7548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdavian AR, Mirrahimi MA (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159(1–3):264–271

    Article  CAS  Google Scholar 

  • Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30:5982–5988

    Article  CAS  PubMed  Google Scholar 

  • Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Lakshmi CS, Reddy BV, Raju BD (2011) Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig J Nanomater Bios 6(1):181–186

    Google Scholar 

  • Mann S, Frankel RB, Blakemore RP (1984) Structure, morphology and crystal growth of bacterial magnetite. Nature 310:405–407

    Article  Google Scholar 

  • Mann S, Sparks NH, Frankel RB, Bazylinski DA, Jannasch HW (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343(6255):258

    Article  CAS  Google Scholar 

  • Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Ital J Agron 7(3):37

    Article  Google Scholar 

  • Mashjoor S, Yousefzadi M, Zolgharnain H, Kamrani E, Alishahi M (2018) Organic and inorganic nano-Fe3O4: alga Ulva flexuosa-based synthesis, antimicrobial effects and acute toxicity to briny water rotifer Brachionus rotundiformis. Environ Pollut 237:50–64

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga T, Okamura Y, Tanaka T (2004) Biotechnological application of nano-scale engineered bacterial magnetic particles. J Mater Chem 14(14):2099–2105

    Article  CAS  Google Scholar 

  • Mazumdar H, Haloi N (2017) A study on biosynthesis of iron nanoparticles by Pleurotus sp. J Microbiol Biotechnol Res 1(3):39–49

    Google Scholar 

  • Mohamed YM, Azzam AM, Amin BH, Safwat NA (2015) Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr J Biotechnol 14(14):1234–1241

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  CAS  Google Scholar 

  • Moon JW, Rawn CJ, Rondinone AJ, Love LJ, Roh Y, Everett SM, Lauf RJ, Phelps TJ (2010) Large-scale production of magnetic nanoparticles using bacterial fermentation. J Ind Microbiol Biotechnol 37(10):1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P (2017) Stenotrophomonas and Microbacterium: mediated biogenesis of copper, silver and iron nanoparticles-proteomic insights and antibacterial properties versus biofilm formation. J Clust Sci 28(1):331–358

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M (2001) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed Angew. Chem Int Ed Engl 40(19):3585–3588

    Article  CAS  Google Scholar 

  • Nadagouda MN, Hoag G, Collins J, Varma RS (2009) Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants. Cryst Growth Des 9(11):4979–4983

    Article  CAS  Google Scholar 

  • Nagajyothi PC, Lee KD (2011) Synthesis of plant-mediated silver nanoparticles using Dioscorea batatas rhizome extract and evaluation of their antimicrobial activities. J Nanomat 2011:49

    Article  CAS  Google Scholar 

  • Namvar F, Mohamed S, Fard SG, Behravan J, Mustapha NM, Alitheen NB, Othman F (2012) Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction. Food Chem 130(2):376–382

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Advances in colloid and interface. Science 156(1–2):1–3

    CAS  Google Scholar 

  • Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanopart Res 13(8):3129–3137

    Article  CAS  Google Scholar 

  • Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2010) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous Sorghum bran extracts. Langmuir 27(1):264–271

    Article  CAS  PubMed  Google Scholar 

  • Ogholbeyg AB, Kianvash A, Hajalilou A, Abouzari-Lotf E, Zarebkohan A (2018) Cytotoxicity characteristics of green assisted-synthesized superparamagnetic maghemite (γ-Fe2O3) nanoparticles. J Mater Sci Mater Electron 29(14):12135–12143

    Article  CAS  Google Scholar 

  • Patra JK, Baek KH (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:219

    Article  CAS  Google Scholar 

  • Pavani KV, Kumar NS (2013) Adsorption of iron and synthesis of iron nanoparticles by Aspergillus species kvp 12. Am J Nanomater 1(2):24–26

    Google Scholar 

  • Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R (2003) Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc 125(34):10192–10193

    Article  CAS  PubMed  Google Scholar 

  • Perez-Gonzalez T, Jimenez-Lopez C, Neal AL, Rull-Perez F, Rodriguez-Navarro A, Fernandez-Vivas A, Iañez-Pareja E (2010) Magnetite biomineralization induced by Shewanella oneidensis. Geochim Cosmochim Acta 74(3):967–979

    Article  CAS  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract Spectrochim. Acta Mol Biomol Spectrosc 73:374–381

    Article  CAS  Google Scholar 

  • Philipse AP, Maas D (2002) Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir 18(25):9977–9984

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, https://doi.org/10.1155/2014/963961

  • Prasad R (2016) Advances and Applications through Fungal Nanobiotechnology. Springer, International Publishing Switzerland (ISBN: 978-3-319-42989-2)

    Google Scholar 

  • Prasad R (2017) Fungal Nanotechnology: Applications in Agriculture, Industry, and Medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Prasad R, Jha A, Prasad K (2018a) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0 https://www.springer.com/978-3-319-99570-0

  • Prasad R, Kumar V, Kumar M, Wang S (2018b) Fungal Nanobionics: Principles and Applications. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-8666-3) https://www.springer.com/gb/book/9789811086656

  • Prathna TC, Mathew L, Chandrasekaran N, Raichur AM, Mukherjee A (2010) Biomimetic synthesis of nanoparticles: science, technology & applicability. In: Biomimetics learning from nature. InTech

    Google Scholar 

  • Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19(35):6274–6293

    Article  CAS  Google Scholar 

  • Rai M (2011) Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer, Berlin

    Chapter  Google Scholar 

  • Raj K, Moskowitz B, Casciari R (1995) Advances in ferrofluid technology. J Magn Magn Mater 149(1–2):174–180

    Article  CAS  Google Scholar 

  • Renugadevi K, Aswini RV (2012) Microwave irradiation assisted synthesis of silver nanoparticle using Azadirachta indica leaf extract as a reducing agent and in vitro evaluation of its antibacterial and anticancer activity. Int J Nanomat Bio 2:5–10

    Google Scholar 

  • Roh Y, Lauf RJ, McMillan AD, Zhang C, Rawn CJ, Bai J, Phelps TJ (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun 118(10):529–534

    Article  CAS  Google Scholar 

  • Roh Y, Gao H, Vali H, Kennedy DW, Yang ZK, Gao W, Dohnalkova AC, Stapleton RD, Moon JW, Phelps TJ, Fredrickson JK (2006) Metal reduction and iron biomineralization by a psychrotolerant Fe (III)-reducing bacterium, Shewanella sp. strain PV-4. Appl Microbiol Biotechnol 72(5):3236–3244

    CAS  Google Scholar 

  • Saifuddin N, Wong CW, Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6(1):61–70

    CAS  Google Scholar 

  • Salem M, Xia Y, Allan A, Rohani S, Gillies ER (2015) Curcumin-loaded, folic acid-functionalized magnetite particles for targeted drug delivery. RSC Adv 5(47):37521–37532

    Article  CAS  Google Scholar 

  • Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46(12):2560–2566

    Article  CAS  Google Scholar 

  • Satyavathi R, Krishna MB, Rao SV et al (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in non-linear optics. Adv Sci Lett 3:1–6

    Article  CAS  Google Scholar 

  • Seabra AB, Haddad P, Duran N (2013) Biogenic synthesis of nanostructured iron compounds: applications and perspectives. IET Nanobiotechnol 7(3):90–99

    Article  CAS  PubMed  Google Scholar 

  • Sen IK, Mandal AK, Chakraborti S, Dey B, Chakraborty R, Islam SS (2013) Green synthesis of silver nanoparticles using glucan from mushroom and study of antibacterial activity. Int J Biol Macromol 62:439–449

    Article  CAS  PubMed  Google Scholar 

  • Senthil M, Ramesh C (2012) Biogenic synthesis of Fe3O4 Nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Dig J Nanomater Biostruct 7:1655–1660

    Google Scholar 

  • Sharad N, Swapnil R, Ganesh R, Samadhan S, Dinesh K, Shashikant B, Anuj K, Orlando MN, Rajender S, Manoj B (2014) Iron oxide-supported copper oxide nanoparticles (nanocat–Fe–CuO): magnetically recyclable catalysts for the synthesis of pyrazole derivatives, 4-methoxyaniline, and ullmann-type condensation reactions ACS sustainable chemistry. ACS Sustain Chem Eng 2(7):1699–1706

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1–2):83–96

    Article  CAS  PubMed  Google Scholar 

  • Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11(3):253–256

    Article  CAS  Google Scholar 

  • Siddiqi KS, Ur-rahman A, Tajuddin HA (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett 11(1):498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siji S, Njana J, Amrita PJ, Vishnudasan D (2018) Biogenic synthesis of iron oxide nanoparticles from marine algae. Int J Multidisciplin Res TIJMR 28(1):1–7

    Google Scholar 

  • Sivaraman SK, Elango I, Kumar S, Santhanam V (2009) A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr Sci 97(7):1055–1058

    CAS  Google Scholar 

  • Skibola CF (2004) The effect of Fucus vesiculosus, an edible brown seaweed, upon menstrual cycle length and hormonal status in three pre-menopausal women: a case report. BMC Complem Altern M 4(1):10

    Article  Google Scholar 

  • Sokolova T, Hanel J, Onyenwoke RU, Reysenbach AL, Banta A, Geyer RJ, González JM, Whitman WB, Wiegel J (2007) Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov sp. nov. and Thermolithobacter carboxydivorans sp. nov. Extremophiles 11(1):145–157

    Article  CAS  PubMed  Google Scholar 

  • Solanki A, Kim JD, Lee KB (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3:567–578

    Article  CAS  PubMed  Google Scholar 

  • Srivastava SK, Constanti M (2012) Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanoparticl Res 14(4):831

    Article  CAS  Google Scholar 

  • Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R (2015) Chlorococcum sp. MM11-a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol 27(5):1861–1869

    Article  CAS  Google Scholar 

  • Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3(7):955–960

    Article  CAS  Google Scholar 

  • Sundaram PA, Augustine R, Kannan M (2012) Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil Biotechnol. Bioprocess Eng 17(4):835–840

    Article  CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Wang W, Broich ML, Moon JW, Gu B, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2011) Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7:2148–2152

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar JC, Raliya R (2013) Rapid, low-cost, and ecofriendly approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9. J Nanopart 2013, Article ID 141274, 4 pages, https://doi.org/10.1155/2013/141274

    Google Scholar 

  • Terris BD, Thomson T (2005) Nanofabricated and self-assembled magnetic structures as data storage media. J Appl Phys 38(12):199

    Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262

    Article  CAS  PubMed  Google Scholar 

  • Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanopart Res 12(1):237–246

    Article  CAS  Google Scholar 

  • Tucek J, Zboril R, Petridis D (2006) Maghemite nanoparticles by view of Mössbauer spectroscopy. J Nanosci Nanotechnol 6(4):926–947

    Article  CAS  PubMed  Google Scholar 

  • Vainshtein M, Belova N, Kulakovskaya T, Suzina N, Sorokin V (2014) Synthesis of magneto-sensitive iron-containing nanoparticles by yeasts. J Ind Microbiol Biotechnol 41(4):657–663

    Article  CAS  PubMed  Google Scholar 

  • Venkatessham M, Ayodhya D, Madnusudhan A, Babu NV, Veerabhadra G (2014) A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies. Appl Nanoscale 4(1):113–119

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 53:55–59

    Article  CAS  PubMed  Google Scholar 

  • Wani KD, Kadu BS, Mansara P, Gupta P, Deore AV, Chikate RC, Poddar P, Dhole SD, Kaul-Ghanekar R (2014) Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF Nps) for hyperthermia and drug delivery applications in breast cancer. PloS One 9(9):e107315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson JHP, Ellwood DC, Soper AK, Charnock J (1999) Nanosized strongly-magnetic bacterially-produced iron sulfide materials. J Magn Magn Mater 203(1–3):69–72

    Article  CAS  Google Scholar 

  • Watson JHP, Croudace IW, Warwick PE, James PAB, Charnock JM, Ellwood DC (2001) Adsorption of radioactive metals by strongly magnetic iron sulfide nanoparticles produced by sulfate-reducing bacteria Sep. Sci Technol 36:2571–2607

    CAS  Google Scholar 

  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29(2):949–982

    Article  CAS  PubMed  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao L, Mertens M, Wortmann L, Kremer S, Valldor M, Lammers T, Kiessling F, Mathur S (2015) Enhanced in vitro and in vivo cellular imaging with green tea coated water-soluble iron oxide nanocrystals. ACS Appl Mater Interfaces 7:6530–6540

    Article  CAS  PubMed  Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37(11):2099–2120

    Article  CAS  PubMed  Google Scholar 

  • Yang SY, Wang WC, Lan CB, Chen CH, Chieh JJ, Horng HE, Hong CY, Yang HC, Tsai CP, Yang CY, Cheng IC (2010a) Magnetically enhanced high-specificity virus detection using bio-activated magnetic nanoparticles with antibodies as labeling markers. J Virol Methods 164(1-2):14–18

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Sun D, Su Y, Opiyo JB, Hong L, Wang Y (2010b) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanopart Res 12(5):1589–1598

    Article  CAS  Google Scholar 

  • Ye Q, Roh Y, Carroll SL, Blair B, Zhou J, Zhang CL, Fields MW (2004) Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol 70(9):5595–5602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeary LW, Moon JW, Love LJ, Thompson JR, Rawn CJ, Phelps TJ (2005) Magnetic properties of biosynthesized magnetite nanoparticles. IEEE Trans Magn 41(12):4384–4389

    Article  CAS  Google Scholar 

  • Yew YP, Shameli K, Miyake M, Kuwano N, Khairudin NBBA, Mohamad SEB, Lee KX (2016) Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res Lett 11(1):276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yew YP, Shameli K, Miyake M, Bahiyah N, Khairudin A, Eva S, Mohamad NT, Green LX (2018) Biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system. A review. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.04.013

  • Yong P, Rowson NA, Farr JP, Harris IR, Macaskie LE (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80(4):369–379

    Article  CAS  PubMed  Google Scholar 

  • Youssef K, Hashim AF, Hussien A, Abd-Elsalam KA (2017) Fungi as ecosynthesizers for nanoparticles and their application in agriculture. In: Fungal nanotechnology. Springer, Cham, pp 55–75

    Chapter  Google Scholar 

  • Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, Farahani F (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16(8):6667–6676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavarzina DG, Kolganova TV, Boulygina ES, Kostrikina NA, Tourova TP, Zavarzin GA (2006) Geoalkalibacter ferrihydriticus gen. nov. sp. nov., the first alkaliphilic representative of the family Geobacteraceae, isolated from a soda lake. Microbiology 75(6):673–682

    Article  CAS  Google Scholar 

  • Zhang L, Dong WF, Sun HB (2013) Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 5(17):7664–7684

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Saatchi K, Häfeli UO (2009) Preparation of biodegradable magnetic microspheres with poly (lactic acid)-coated magnetite. J Magn Magn Mater 321(10):1356–1363

    Article  CAS  Google Scholar 

  • Zhou W, He W, Zhong S, Wang Y, Zhao H, Li Z, Yan S (2009) Biosynthesis and magnetic properties of mesoporous Fe3O4 composites. J Magn Magn Mater 321(8):1025–1028

    Article  CAS  Google Scholar 

  • Zhu K, Pan H, Li J, Yu-Zhang K, Zhang SD, Zhang WY, Zhou K, Yue H, Pan Y, Xiao T, Wu LF (2010) Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res Microbiol 161(4):276–283

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramadan, M.M., Asran-Amal, Almoammar, H., Abd-Elsalam, K.A. (2019). Microbially Synthesized Biomagnetic Nanomaterials. In: Abd-Elsalam, K., Mohamed, M., Prasad, R. (eds) Magnetic Nanostructures . Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16439-3_4

Download citation

Publish with us

Policies and ethics