Skip to main content

Application of Magnetic Nanoparticles for Removal of Pesticides from Environmental Samples Prior to Instrumental Analysis

  • Chapter
  • First Online:

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Magnetic nanoparticles (MNPs) are a special class of functional materials which can be manipulated using magnetic fields. Such particles commonly consist of a magnetic material (iron, nickel, and cobalt) and a functionalized chemical component. MNPs are superparamagnetic because of their nanoscale size, offering great potentials in their bare form or coated with a surface coating and functional groups. Magnetic nanoparticles (MNPs) are of great interest in modern research for various environmental remedies including a wide range of other disciplines. It is a challenging task to synthesize novel MNPs with unique physical, chemical, and electrical properties for application use for separation and analysis of chemical substances. Here, we describe the different synthesis methods such as coprecipitation, thermal decomposition, hydrothermal method, microemulsion, sonochemical processing, sol-gel method, and electrochemical method for preparation of functionalized MNPs. Finally, the mechanism of separation and its application for analysis of pesticides from various samples using UV-Vis, high-performance liquid chromatography (HPLC), gas chromatography (GC), HPLC-mass spectrometry (MS) and GC-MS, and electroanalytical techniques are also reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adelantado C, Rios A, Zougagh M (2018) Magnetic nanocellulose hybrid nanoparticles and ionic liquid for extraction of neonicotinoid insecticides from milk samples prior to determination by liquid chromatography-mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 35:1755–1766

    Article  CAS  Google Scholar 

  • Badawy MEI, Marei ASM, El-Nouby MAM (2018) Preparation and characterization of chitosan-siloxane magnetic nanoparticles for the extraction of pesticides from water and determination by HPLC. Sep Sci Plus 1:506–519

    Article  CAS  Google Scholar 

  • Baker I (2018) Magnetic nanoparticle synthesis. Nanobiomaterial 198–229

    Google Scholar 

  • Bala R, Sharma RK, Wangoo N (2016) Development of gold nanoparticles based aptasensor for the colorimetric detection of organophosphorus pesticides phorate. Anal Bioanal Chem 408:333–338

    Article  CAS  Google Scholar 

  • Conroy S, Jerry Lee SH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    Article  Google Scholar 

  • Daou TJ, Pourroy G, Colin SB, Greneche JM, Bouillet CU, Legare P, Bernhardt P, Leuvrey C, Rogez G (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18:4399–4404

    Article  CAS  Google Scholar 

  • Darezereshki E, Alizadeh M, Bakhtiari F, Schaffie M, Ranjbar M (2011) A novel thermal decomposition method for the synthesis of ZnO nanoparticles from low concentration ZnSO4 solutions. Appl Clay Sci 54:107–111

    Article  CAS  Google Scholar 

  • Domingo C, Clemente RR, Blesa M (1994) Morphological properties of a-FeOOH, g-FeOOH and Fe3O4 obtained by oxidation of aqueous Fe (II) solutions. J Colloid Interface Sci 165:244–252

    Article  CAS  Google Scholar 

  • Fan C, Liang Y, Dong H, Ding G, Zhang W, Tang G, Yang J, Kong D, Wang D, Cao Y (2017) In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion-exchange reagent combined Fe3O4 magnetic nanoparticles for determination of pyrethroid pesticides in water samples. Anal Chim Acta 975:20–29

    Article  CAS  Google Scholar 

  • Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217

    Article  CAS  Google Scholar 

  • Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 941–949

    Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Gupta V, Moradi O, Tyagi I, Agrawal S, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf A, Goodarzi M, Garshasbhi A (2016) Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit Rev Environ Sci Technol 46:93–118

    Article  CAS  Google Scholar 

  • He L, Wang M, Ge J, Yin Y (2012) Magnetic assembly route to colloidal responsive photonic nanostructures. Acc Chem Res 45:1431–1440

    Article  CAS  Google Scholar 

  • Heidari H, Razmi H (2012) Multi-response optimization of magnetic solid phase extraction based on carbon-coated Fe3O4 nanoparticles using desirability function approach for the determination of the organophosphorus pesticides in aquatic samples by HPLC–UV. Talanta 99:13–21

    Article  CAS  Google Scholar 

  • Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 8:927–934

    Article  Google Scholar 

  • Karimian R, Piri F, Hosseini Z (2017) Magnetic molecularly imprinted nanoparticles for the solid-phase extraction of diazinon from aqueous medium, followed its determination by HPLC-UV. J Appl Biotechnol Rep 4:533–539

    Google Scholar 

  • Kaur R, Hasan A, Iqbal N, Alam S, Saini MK, Raza SK (2014) Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: a review. J Sep Sci 37:1805–1825

    Article  CAS  Google Scholar 

  • Kavre I, Kostevc G, Kralj S, Vilfan A, Babic D (2014) Fabrication of magneto-responsive microgears based on magnetic nanoparticle embedded PDMS. RSC Adv 4:38316–38322

    Article  CAS  Google Scholar 

  • Liu X, Li L, Liu YQ, Shi XB, Li WJ, Yang Y, Mao LG (2014) Ultrasensitive detection of deltamethrin by immune magnetic nanoparticles separation coupled with surface plasmon resonance sensor. Biosens Bioelectron 59:328–334

    Article  CAS  Google Scholar 

  • Lopez JA, Gonzalez F, Bonilla FA, Zambrano G, Gomez ME (2010) Synthesis and characterization of Fe3O4 magnetic nanofluid. Revista Latinoam. e Metal. y Mater 30:60–66

    Google Scholar 

  • Lu AH, Schmidt W, Matoussevitch N, Bonnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schuth F (2004) Nanoengineering of a magnetically separable hydrogenation catalyst. Ang Chem Int Ed Engl 43:4303–4306

    Article  CAS  Google Scholar 

  • Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46:1222–1244

    Article  CAS  Google Scholar 

  • Ma X, Wang J, Sun M, Wang W, Wu Q, Wang C, Wang Z (2013) Magnetic solid-phase extraction of neonicotinoid pesticides from pear and tomato samples using graphene grafted silica-coated Fe3O4 as the magnetic adsorbent. Anal Methods 5:2809–2815

    Article  CAS  Google Scholar 

  • Mahendran V (2012) Nanofluid based opticalsensor for rapid visual inspection of defects in ferromagnetic materials. Appl Phys Lett 100:073104

    Article  Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34:237–247

    Article  CAS  Google Scholar 

  • Nathan MGT, Suganya R (2018) Investigation of the morphological and magnetic properties of Fe3O4 nanoparticles for biomedical applications. Int J Pure Appl Math 119:6515–6524

    Google Scholar 

  • Nodeh HR, Ibrahim WAW, Kamboha MA, Sanagi MM (2015) Dispersive graphene-based silica-coated magnetic nanoparticles as a new adsorbent for preconcentration of chlorinated pesticides from environmental water. RSC Adv 5:76424–76434

    Article  CAS  Google Scholar 

  • Noori AH, Rezaee M, Kazemipour M, Mashayekhi HA (2017) Simultaneous determination of permethrin and deltamethrin in water samples by magnetic solid-phase extraction coupled with dispersive liquid-liquid microextraction combined with gas chromatography. S Afr J Chem 70:200–208

    Article  CAS  Google Scholar 

  • Ozcan S, Tor A, Aydin ME (2012) Application of magnetic nanoparticles to residue analysis of organochlorine pesticides in water samples by GC/MS. J AOAC Int 95:1343–1348

    Article  CAS  Google Scholar 

  • Perez JAL, Quintela MAL, Mira J, Rivas J, Charles SW (1997) Advances in the preparation of magnetic nanoparticles by the microemulsion method. J Phys Chem 101(41):8045–8047

    Article  Google Scholar 

  • Philip J, Raj SPDB (2006) Nanofluid with tunable thermal properties. Appl Phys Lett 92:043108

    Article  Google Scholar 

  • Philip J, Kumar TJ, alyanasundaram PK, Raj B (2003) Tunable optical filter. Meas Sci Technol 14:1289–1294

    Article  CAS  Google Scholar 

  • Philip J, Mahendran V, Felicia L (2013) A simple, in-expensive and ultrasensitive magnetic nanofluid based sensor for detection of cations, ethanol and ammonia. J Nanofluids 2:112–119

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

  • Qiu JD, Xiong M, Liang RP, Peng HP, Liu F (2009) Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application. Biosens Bioelectron 24:2649–2653

    Article  CAS  Google Scholar 

  • Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification and applications in silica-polymer nanocomposites-a review. J Nanomater 2:112–119

    Google Scholar 

  • Ramaswamy B, Kulkarni SD, Villar PS, Smith RS, Eberly C, Araneda RC, Depireux DA, Shapiro B (2015) Movement of magnetic nanoparticles in brain tissue: mechanisms and safety. Nanomed Nanotech Biol Med 11:1821–1829

    Article  CAS  Google Scholar 

  • Sadegh H, Zare K, Maazinejad B, Shahryari-ghoshekandia R (2006) Synthesis of MWCNT-COOH-Cysteamine composite and its application for dye removal. J Mol Liq 215:221–228

    Article  Google Scholar 

  • Saeidi M, Naeimi A, Komeili M (2016) Magnetite nanoparticles coated with methoxy polyethylene glycol as an efficient adsorbent of diazinon pesticide from water. Adv Environ Technol 1:25–31

    Google Scholar 

  • Salazar S, Guerra D, Yutronic N, Jara P (2018) Removal of aromatic chlorinated pesticides from aqueous solution using β-cyclodextrin polymers decorated with Fe3O4 nanoparticles. Polymers 10:1038

    Article  Google Scholar 

  • Shaw SY, Chen YJ, Ou JJ, Ho L (2006) Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles. Enzym Microb Technol 39:1089–1095

    Article  CAS  Google Scholar 

  • Shen HY, Zhu Y, Wen XE, Zhuang YM (2007) Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides. Anal Bioanal Chem 387:2227–2237

    Article  CAS  Google Scholar 

  • Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632

    Article  CAS  Google Scholar 

  • Tian M, Chen DX, Sun YL, Yang YW, Jia Q (2013) Pillararene-functionalized Fe3O4 nanoparticles as magnetic solid-phase extraction adsorbent for pesticide residue analysis in beverage samples. RSC Adv 3:22111–22119

    Article  CAS  Google Scholar 

  • Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, Brumfield S, Willis AF, Jackiw L, Jutila M, Young MJ, Douglas T (2006) Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc 128:16626–16633

    Article  CAS  Google Scholar 

  • Wang C, Irudayaraj J (2010) Multifunctional magnetic–optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Inter Sci 6:283–289

    CAS  Google Scholar 

  • Wang X, Zhuang J, Peng Q, Li Y (2005) A general study for nanocrystal synthesis. Nature 437:121–124

    Article  CAS  Google Scholar 

  • Wanjeri VWO, Sheppard CJ, Prinsloo ARE, Ngila JC, Ndungu PG (2018) Isotherm and kinetic investigations on the adsorption of organophosphorus pesticides on graphene oxide based silica coated magnetic nanoparticles functionalized with 2-phenylethylamine. J Environ Chem Eng 6:1333–1346

    Article  CAS  Google Scholar 

  • Woo K, Lee HJ, Ahn JP, Park YS (2003) Sol-gel mediated synthesis of Fe2O3 nanorods. Adv Mater 15:1761–1764

    Article  CAS  Google Scholar 

  • Wu Q, Zhao G, Feng C, Wang C, Wang Z (2011) Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. Chromatography 1218:7936–7942

    Article  CAS  Google Scholar 

  • Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Warner MG (2007) Removal of heavymetals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 4:5114–5119

    Article  Google Scholar 

  • Yao GH, Liang RP, Huang CF, Wang Y, Qiu JD (2013) Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition. Anal Chem 85(24):11944–11951

    Article  CAS  Google Scholar 

  • Yin B, Ma H, Wang S, Chen S (2003) Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J Phys Chem 107:8898–8904

    Article  CAS  Google Scholar 

  • Yang T, Shen C, Yang H, Xiao C, Xu Z, Chen S, Shi D, Gao H (2006) Synthesis, characterization and self-assemblies of magnetite nanoparticles. Surf Interf Ana 38:1063–1067

    Google Scholar 

  • Zamora-Galvez A, Mayorga-Matinez CC, Parolo C, Pons J, Merkoci A (2017) Magnetic nanoparticle-molecular imprinted polymer: a new impedimetric sensor for tributyltin detection. Electrochem Commun 82:6–11

    Article  CAS  Google Scholar 

  • Zeng Q, Baker I, Loudis JA, Liao Y, Hoopes PJ, Weaver JB (2007) Fe/Fe oxide nanocomposite particles with large specific absorption rate (SAR) for hyperthermia. Appl Phys Lett 90:233112–233114

    Article  Google Scholar 

  • Zhang S, Zhang H, Chen D (2015) Preparation and application of Fe3O4 magnetic nanoparticles graphene sheet in the magnetic solid-phase extraction of organochiorine pesticides from water. J Chem Pharm Res 7:1378–1383

    CAS  Google Scholar 

  • Zhao Q, Lu Q, Feng YQ (2013) Dispersive microextraction based on magnetic polypyrrole nanowires for the fast determination of pesticide residues in beverage and environmental water samples. Anal Bioanal Chem 405:4765–4776

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrivas, K., Patel, S., Maji, P., Sinha, D. (2019). Application of Magnetic Nanoparticles for Removal of Pesticides from Environmental Samples Prior to Instrumental Analysis. In: Abd-Elsalam, K., Mohamed, M., Prasad, R. (eds) Magnetic Nanostructures . Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16439-3_13

Download citation

Publish with us

Policies and ethics