Skip to main content

Potential of Biogenic Plant-Mediated Iron and Iron Oxide Nanoparticles and Their Utility

  • Chapter
  • First Online:
Plant Nanobionics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Plant nanobionics is a new field of science or bioengineering in which nanostructured material is inserted into living plant cells, in turn changing the functioning of the plant tissue or organelle; in other words, plant nanobionics describes superpowered plants, including plants that can detect explosives at extreme temperatures, plants that can detect heavy metals in vegetables and fruits, an array of wild-type plants capable of imaging objects in their environment, self-powered light sources, infrared communication devices, and self-powered nanosensors to detect toxicants/pathogens. Genetic or structural modifications of plants may also make them capable of detecting pollutants, i.e., for bioremediation. Biogenic synthesis and applications of coated and uncoated iron and iron oxide nanoparticles have been established. The magnetic properties of both types of nanoparticles have been used in the treatment of cancer, in drug delivery, as magnetic resonance imaging agents, for catalysis, for detection of toxicants/pollutants, and for removal of pesticides from potable water. Polymer-coated iron and iron oxide nanoparticles have good biocompatibility and slow release, and are effective and long lasting. The biological efficacy of both types of nanoparticles is dependent on their shape, size, and orientation, as well as their concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah NH, Shameli K, Abdullah EC, Abdullah LC (2017) A facile and green synthetic approach toward fabrication of starch stabilized magnetite nanoparticles. Chin Chem Lett 28:1590–1596

    Article  CAS  Google Scholar 

  • Abedini A, Daud AR, Hamid MAA, Othman NK (2014) Radiolytic formation of Fe3O4 nanoparticles: influence of radiation dose on structure and magnetic properties. PLoS One 9:90055

    Article  CAS  Google Scholar 

  • Akbarzadeh A, Mikaeili H, Zarghami N, Mohammad R, Barkhordari A, Davaran S (2012) Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int J Nanomedicine 7:511–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lubbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648

    CAS  PubMed  Google Scholar 

  • Ali A, AlSalhi MS, Atif M, Ansari AA, Israr MQ, Sadaf JR, Ahmed E, Nur O, Willander M (2013) Potentiometric urea biosensor utilizing nano biocomposite of chitosan–iron oxide magnetic nanoparticles. J Phys 414:1–11

    Google Scholar 

  • Alili L, Chapiro S, Marten GU, Schmidt AM, Zanger K, Brenneisen P (2015) Effect of Fe3O4 nanoparticles on skin tumor cells and dermal fibroblasts. Biomed Res Int 2015:530957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almeida I, Henriques F, Carvalho MD, Viana AS (2017) Carbon disulfide mediated self-assembly of laccase and iron oxide nanoparticles on gold surfaces for biosensing applications. J Colloid Interface Sci 485:242–250

    Article  CAS  PubMed  Google Scholar 

  • Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, Mallick B, Jha S (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle–bacteria interface. Sci Rep 5:14813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44(23):8576–8607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artemov D, Mori N, Okollie B, Bhujwalla ZM (2003) MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 49(3):403–408

    Article  CAS  PubMed  Google Scholar 

  • Atanasijevic T, Shusteff M, Fam P, Jasanoff A (2006) Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc Natl Acad Sci U S A 103(40):14707–14712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz HY, Gohari MS (2016) Fe3O4/ZnO/Ag3VO4/AgI nanocomposites: quaternary magnetic photocatalysts with excellent activity in degradation of water pollutants under visible light. Sep Purif Technol 166:63–72

    Article  CAS  Google Scholar 

  • Bagheri S, Chandrappa K, Hamid SBA (2013) Generation of hematite nanoparticles via sol–gel method. Res J Chem Sci 3:62–68

    CAS  Google Scholar 

  • Barratt G, Courraze G, Couvreur P (2002) In: Dumitriu S (ed) Polymeric biomaterials, 2nd edn. Marcel Dekker, Inc, New York

    Google Scholar 

  • Basavegowda N, Magar KBS, Mishra K, Lee YR (2014a) Green fabrication of ferromagnetic Fe3O4 nanoparticles and their novel catalytic applications for the synthesis of biologically interesting benzoxazinone and benzthioxazinone derivatives. New J Chem 38:5415–5420

    Article  CAS  Google Scholar 

  • Basavegowda N, Mishra K, Lee YR (2014b) Sonochemically synthesized ferromagnetic Fe3O4 nanoparticles as a recyclable catalyst for the preparation of pyrrolo[3,4-c]quinoline-1,3-dione derivatives. RSC Adv 4:61660–61666

    Article  CAS  Google Scholar 

  • Baumgartner J, Menguy N, Gonzalez TP, Morin G, Widdrat M, Faivre D (2016) Elongated magnetite nanoparticle formation from a solid ferrous precursor in a magnetotactic bacterium. J R Soc Interface 13(124):20160665. https://doi.org/10.1098/rsif.2016.0665

    Article  PubMed Central  CAS  Google Scholar 

  • Beckers L, Hiligsmann S, Lambert SD, Heinrichs B, Thonart P (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresour Technol 133:109–117

    Article  CAS  PubMed  Google Scholar 

  • Bellusci M, La Barbera A, Padella F et al (2014) Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process. Int J Nanomedicine 9:1919–1929

    PubMed  PubMed Central  Google Scholar 

  • Benelli G (2016) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34

    Article  PubMed  Google Scholar 

  • Benelli G, Iacono AL, Canale A, Mehlhorn H (2016) Mosquito vectors and the spread of cancer: an overlooked connection. Parasitol Res 115:2131–2137

    Article  PubMed  Google Scholar 

  • Bhandari R, Gupta P, Dziubla T, Hilt JZ (2016) Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles. Mater Sci Eng C Mater Biol Appl 67:59–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomati-Miguel O, Mazeina L, Navrotsky A, Veintemillas-Verdaguer S (2008) Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis. Chem Mater 20:591–598

    Article  CAS  Google Scholar 

  • Bombin S, LeFebvre M, Sherwood J, Xu Y, Bao Y, Ramonell KM (2015) Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. Int J Mol Sci 16(10):24174–24193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butoescu N, Seemayer CA, Palmer G, Guerne PA, Gabay C, Doelker E, Jordan O (2009) Magnetically retainable microparticles for drug delivery to the joint: efficacy studies in an antigen-induced arthritis model in mice. Arthritis Res Ther 11:R72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai Y, Shen Y, Xie A, Li S, Wang X (2010) Green synthesis of soya bean sprouts–mediated superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater 322(19):2938–2943

    Article  CAS  Google Scholar 

  • Carenza E, Barceló V, Morancho A, Montaner J, Rosell A, Roig A (2014) Rapid synthesis of water-dispersible superparamagnetic iron oxide nanoparticles by a microwave-assisted route for safe labeling of endothelial progenitor cells. Acta Biomater 10:3775–3785

    Article  CAS  PubMed  Google Scholar 

  • Carvalho M, Ferreira PJ, Mendes VS, Silva R, Pereira JA, Jerónimo C, Silva BM (2010) Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem Toxicol 48:441–447

    Article  CAS  PubMed  Google Scholar 

  • Chang Y-P, Ren C-L, Qu J-C, Chen X-G (2012) Preparation and characterization of Fe3O4/graphene nanocomposite and investigation of its adsorption performance for aniline and p-chloroaniline. Appl Surf Sci 261:504–509

    Article  CAS  Google Scholar 

  • Chao Y, Makale M, Karmali PP, Sharikov Y, Tsigelny I, Merkulov S, Kesari S, Wrasidlo W, Ruoslahti E, Simberg D (2012) Recognition of dextran–superparamagnetic iron oxide nanoparticle conjugates (Feridex) via macrophage scavenger receptor charged domains. Bioconjug Chem 23(5):1003–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Bandyopadhyay A, Sarkar K (2011) Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnol 9:34

    Article  CAS  Google Scholar 

  • Chauhan N, Narang J, Jain U (2016) Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly(indole-5-carboxylic acid). J Exp Nanosci 11:111–122

    Article  CAS  Google Scholar 

  • Cheng KW, Hsu SH (2017) A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles. Int J Nanomedicine 12:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng R, Cheng C, Liu GH, Zheng X, Li G, Li J (2015) Removing pentachlorophenol from water using a nanoscale zero-valent iron/H2O2 system. Chemosphere 141:138–143

    Article  CAS  PubMed  Google Scholar 

  • Chourpa I, Douziech-Eyrolles L, Ngaboni-Okassa L, Fouquenet JF, Cohen-Jonathan S, Souce M, Marchais H, Dubois P (2005) Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 130:1395–1403

    Article  CAS  PubMed  Google Scholar 

  • Dadashzadeh ER, Hobson M, Henry Bryant L Jr, Dean DD, Frank JA (2013) Rapid spectrophotometric technique for quantifying iron in cells labeled with superparamagnetic iron oxide nanoparticles: potential translation to the clinic. Contrast Media Mol Imaging 8(1):50–56

    Article  CAS  PubMed  Google Scholar 

  • Daldrup-Link H, Golovko D, Ruffell B, Denardo DG, Castaneda R, Ansari C, Rao J, Tikhomirov GA, Wendland MF, Corot C, Coussens LM (2011) MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res 17(17):5695–5704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dani RK, Schumann C, Taratula O, Taratula O (2014) Temperature-tunable iron oxide nanoparticles for remote-controlled drug release. AAPS PharmSciTech 15(4):963–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darezereshki E, Ranjbar M, Bakhtiari F (2010) One-step synthesis of maghemite (c-Fe2O3) nano-particles by wet chemical method. J Alloys Compd 502:257–260

    Article  CAS  Google Scholar 

  • Davenport AJ, Oblonsky LJ, Ryan MP, Toney MF (2000) The structure of the passive film that forms on iron in aqueous environments. J Electrochem Soc 147:2162–2173

    Article  CAS  Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Kumar PM, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi. Parasitol Res 114:1519–1529

    Article  PubMed  Google Scholar 

  • Douziech-Eyrolles L, Marchais H, Herve K, Munnier E, Souce M, Linassier C, Dubois P, Chourpa I (2007) Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2:541–550

    PubMed  PubMed Central  Google Scholar 

  • Duan X, Corgié SC, Aneshansley DJ, Wang P, Walker LP, Giannelis EP (2014) Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater. Chemphyschem 15(5):974–980

    Article  CAS  PubMed  Google Scholar 

  • Elbialy NS, Fathy MM, Khalil WM (2015) Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. Int J Pharm 490(1–2):190–199

    Article  CAS  PubMed  Google Scholar 

  • Ferguson RM, Khandhar AP, Arami H, Hua L, Hovorka O, Krishnan KM (2013) Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers. Biomed Tech (Berl) 58(6):493–507

    Article  CAS  Google Scholar 

  • Foy SP, Labhasetwar V (2011) Oh the irony: iron as a cancer cause or cure? Biomaterials 32(35):9155–9158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke K, Kettering M, Lange K, Kaiser WA, Hilger I (2013) The exposure of cancer cells to hyperthermia, iron oxide nanoparticles, and mitomycin C influences membrane multidrug resistance protein expression levels. Int J Nanomedicine 8:351–363

    PubMed  PubMed Central  Google Scholar 

  • Gamarra LF, da Costa-Filho AJ, Mamani JB, de Cassia Ruiz R, Pavon LF, Sibov TT, Vieira ED, Silva AC, Pontuschka WM, Amaro E Jr (2010) Ferromagnetic resonance for the quantification of superparamagnetic iron oxide nanoparticles in biological materials. Int J Nanomed 5:203–211

    Article  CAS  Google Scholar 

  • Garcıa-Jimeno S, Estelrich J (2013) Ferrofluid based on polyethylene glycol–coated iron oxide nanoparticles: characterization and properties. Colloids Surf A Physicochem Eng Asp 420:74–81

    Article  CAS  Google Scholar 

  • Gholoobi A, Meshkat Z, Abnous K, Ghayour-Mobarhan M, Ramezani M, Shandiz FH, Verma K, Darroudi M (2017) Biopolymer-mediated synthesis of Fe3O4 nanoparticles and investigation of their in vitro cytotoxicity effects. J Mol Struct 1141:594–599

    Article  CAS  Google Scholar 

  • Giri S, Samanta S, Maji S, Ganguli S, Bhaumik A (2005) Magnetic properties of a-Fe2O3 nanoparticle synthesized by a new hydrothermal method. J Magn Magn Mater 285:296–302

    Article  CAS  Google Scholar 

  • Govindarajan M, Benelli G (2017) A facile one-pot synthesis of ecofriendly nanoparticles using Carissa carandas: ovicidal and larvicidal potential on malaria, dengue and filariasis mosquito vectors. J Clust Sci 28:15–36

    Article  CAS  Google Scholar 

  • Govindarajan M, Nicoletti M, Benelli G (2016) Bio-physical characterization of poly-dispersed silver nanocrystals fabricated using Carissa spinarum: a potent tool against mosquito vectors. J Clust Sci 27:745–761

    Article  CAS  Google Scholar 

  • Granot D, Shapiro EM (2011) Release activation of iron oxide nanoparticles: (REACTION) a novel environmentally sensitive MRI paradigm. Magn Reson Med 65(5):1253–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guertin J, Jacobs JA, Avakian CP (2016) Chromium(VI) handbook. CRC Press, Boca Raton

    Google Scholar 

  • Guo S, Li D, Zhang L, Li J, Wang E (2009) Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials 30:1881–1889

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2:23–39

    Article  CAS  PubMed  Google Scholar 

  • Hafeli U, Schutt W, Teller J, Zborowski M (1997) Scientific and clinical applications of magnetic microspheres. Plenum Press, New York

    Book  Google Scholar 

  • Hanini A, Schmitt A, Kacem K, Chau F, Ammar S, Gavard J (2011) Evaluation of iron oxide nanoparticle biocompatibility. Int J Nanomedicine 6:787–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmingsson A, Carlsten J, Ericsson A, Klaveness J, Sperber GO, Thuomas KA (1987) Relaxation enhancement of the dog liver and spleen by biodegradable superparamagnetic particles in proton magnetic resonance imaging. Acta Radiol 28:703–705

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Becerra R, Zorrilla C, Ascencio JA (2007) Production of iron oxide nanoparticles by a biosynthesis method: an environmentally friendly route. J Phys Chem 111(44):16147–16153

    CAS  Google Scholar 

  • Hilger I, Hiergeist R, Hergt R, Winnefeld K, Schubert H, Kaiser WA (2002) Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study. Investig Radiol 37(10):580–586

    Article  CAS  Google Scholar 

  • Hoff D, Sheikh L, Bhattacharya S, Nayar S, Webster TJ (2013) Comparison study of ferrofluid and powder iron oxide nanoparticle permeability across the blood–brain barrier. Int J Nanomedicine 8:703–710

    PubMed  PubMed Central  Google Scholar 

  • Hong R, Li JH, Wang J, Li HZ (2007) Comparison of schemes for preparing magnetic Fe3O4 nanoparticles. China Particuol 5:186–191

    Article  CAS  Google Scholar 

  • Horniblow RD, Dowle M, Iqbal TH, Latunde-Dada GO, Palmer RE, Pikramenou Z, Tselepis C (2015) Alginate–iron speciation and its effect on in vitro cellular iron metabolism. PLoS One 10(9):0138240

    Article  CAS  Google Scholar 

  • Hribernik S, Sfiligoj-Smole M, Bele M, Gyergyek S, Jamnik J, Stana-Kleinschek K (2012) Synthesis of magnetic iron oxide particles: development of an in situ coating procedure for fibrous materials. Colloids Surf A Physicochem Eng Asp 400:58–66

    Article  CAS  Google Scholar 

  • Hu J, Lo IM, Chen G (2004) Removal of Cr(VI) by magnetite nanoparticle. Water Sci Technol 50:139–146

    Article  CAS  PubMed  Google Scholar 

  • Itodo AU, Itodo HU (2010) Quantitative specification of potentially toxic metals in expired canned tomatoes found in village markets. Nat Sci 8(4):54–59

    Google Scholar 

  • Ittrich H, Peldschus K, Raabe N, Kaul M, Adam G (2013) Superparamagnetic iron oxide nanoparticles in biomedicine: applications and developments in diagnostics and therapy. Rofo 185(12):1149–1166

    Article  CAS  PubMed  Google Scholar 

  • Izadiyan Z, Shameli K, Hara H, Taib SHM (2017) Cytotoxicity assay of biosynthesis gold nanoparticles mediated by walnut (Juglans regia) green husk extract. J Mol Struct 151:97–105

    Google Scholar 

  • Jingting C, Huining L, Yi Z (2011) Preparation and characterization of magnetic nanoparticles containing Fe3O4–dextran–anti-β-human chorionic gonadotropin, a new generation choriocarcinoma-specific gene vector. Int J Nanomedicine 6:285–294

    PubMed  PubMed Central  Google Scholar 

  • Josephson L, Lewis J, Jacobs P, Hahn PF, Stark DD (1988) The effects of iron oxides on proton relaxivity. Magn Reson Imaging 6:647–653

    Article  CAS  PubMed  Google Scholar 

  • Juang JH, Shen CR, Wang JJ, Kuo CH, Chien YW, Kuo HY, Chen FR, Chen MH, Yen TC, Tsai ZT (2013) Magnetic resonance imaging of mouse islet grafts labeled with novel chitosan-coated superparamagnetic iron oxide nanoparticles. PLoS One 8(4):62626

    Article  CAS  Google Scholar 

  • Kamat M, El-Boubbou K, Zhu DC, Lansdell T, Lu X, Li W et al (2010) Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. Bioconjug Chem 21(11):2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050

    Article  CAS  PubMed  Google Scholar 

  • Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and g-Fe2O3 particles. Chem Mater 8(9):2209–2211

    Article  CAS  Google Scholar 

  • Karaoglu E, Baykal A, Erdemi H, Alpsoy L, Sozeri H (2011) Synthesis and characterization of dl-thioctic acid (DLTA)–Fe3O4 nanocomposite. J Alloys Compd 509:9218–9225

    Article  CAS  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732

    Article  CAS  PubMed  Google Scholar 

  • Keller AA, Garner K, Miller RJ, Lenihan HS (2012) Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One 7(8):e43983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keum YS, Li QX (2004) Reduction of nitroaromatic pesticides with zerovalent iron. Chemosphere 54:255–263

    Article  CAS  PubMed  Google Scholar 

  • Khan MI, Mohammad A, Patil G, Naqvi SAH, Chauhan LKS, Ahmad I (2012) Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33:1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H, Tratnyek PG, Chang Y-S (2008) Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environ Sci Technol 42:4106–4112

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Harel N, Jin T, Kim T, Lee P, Zhao F (2013) Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles. NMR Biomed 26(8):949–962

    Article  CAS  PubMed  Google Scholar 

  • Kocbek P, Kralj S, Kreft ME, Kristl J (2013) Targeting intracellular compartments by magnetic polymeric nanoparticles. Eur J Pharm Sci 50(1):130–138

    Article  CAS  PubMed  Google Scholar 

  • Kolhatkar AG, Dannongoda C, Kourentzi K, Jamison AC, Nekrashevich I, Kar A, Cacao E, Strych U, Rusakova I, Martirosyan KS, Litvinov D, Lee TR, Willson RC (2015) Enzymatic synthesis of magnetic nanoparticles. Int J Mol Sci 16(4):7535–7550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koneracka M, Kopcansky P, Antalik M, Timko M, Ramchand CN, Lobo D, Mehta RV, Upadhyay RV (1999) Immobilization of proteins and enzymes to fine magnetic particles. J Magn Magn Mater 201:427–430

    Article  CAS  Google Scholar 

  • Koneracka M, Kopcansky P, Timko M, Ramchand CN, Sequeira A, Trevan M (2002) Direct binding procedure of proteins and enzymes to fine magnetic particles. J Mol Catal B Enzym 18:13–18

    Article  CAS  Google Scholar 

  • Kucheryavy P, He J, John VT, Maharjan P, Spinu L, Goloverda GZ, Kolesnichenko VL (2013) Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir 29(2):710–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—an updated report. Saudi Pharm J 24:473–484

    Article  PubMed  Google Scholar 

  • Kut C, Zhang Y, Hedayati M, Zhou H, Cornejo C, Bordelon D, Mihalic J, Wabler M, Burghardt E, Gruettner C, Geyh A, Brayton C, Deweese TL, Ivkov R (2012) Preliminary study of injury from heating systemically delivered, nontargeted dextran-superparamagnetic iron oxide nanoparticles in mice. Nanomedicine (Lond) 7(11):1697–1711

    Article  CAS  Google Scholar 

  • Latha N, Gowri M (2014) Biosynthesis and characterization of Fe3O4 nanoparticles using Carica papaya leaves extract. Int J Sci Res 3(11):1551–1556

    Google Scholar 

  • Lee J, Tetsuhiko I, Mamoru S (1996) Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J Colloid Interface Sci 177(2):490–494

    Article  CAS  Google Scholar 

  • Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, Nie S, Mao H, Yang L (2013) Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano 7(3):2078–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Jiang W, Luo K et al (2013) Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3:595–615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li D, Tang X, Pulli B, Lin C, Zhao P, Cheng J, Lv Z, Yuan X, Luo Q, Cai H, Ye M (2014) Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging. Int J Nanomedicine 9:3347–3361

    PubMed  PubMed Central  Google Scholar 

  • Li YJ, Dong M, Kong FM, Zhou JP (2015) Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics. Int J Pharm 489(1–2):83–90

    Article  CAS  PubMed  Google Scholar 

  • Lian S, Wang E, Kang Z, Bai Y, Gao L, Jiang M, Hu C, Xu L (2004) Synthesis of magnetite nanorods and porous hematite nanorods. Solid State Commun 129:485–490

    Article  CAS  Google Scholar 

  • Lien HL, Zhang WX (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Coll Surf A Physicochem Eng Asp 191:97–105

    Article  CAS  Google Scholar 

  • Lindemann A, Lüdtke-Buzug K, Fräderich BM, Gräfe K, Pries R, Wollenberg B (2014) Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells. Int J Nanomedicine 9:5025–5040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu JF, Zhao ZS, Jiang GB (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42(18):6949–6954

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Tellez G, Balderas-Hernández P, Barrera-Díaz CE, Vilchis-Nestor AR, Roa-Morales G, Bilyeu B (2013) Green method to form iron oxide nanorods in orange peels for chromium(VI) reduction. J Nanosci Nanotechnol 13(3):2354–2361

    Article  CAS  PubMed  Google Scholar 

  • Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31

    Article  CAS  Google Scholar 

  • Luo F, Yang D, Chen Z, Megharaj M, Naidu R (2016) One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade orange II. J Hazard Mater 303:145–153

    Article  CAS  PubMed  Google Scholar 

  • Ma P, Luo Q, Chen J, Gan Y, Du J, Ding S, Xi Z, Yang X (2012) Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomed 7:4809–4818

    CAS  Google Scholar 

  • Mahmoudi M, Simchi A, Milani AS, Stroeve P (2009a) Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336:510–518

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M (2009b) Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. J Phys Chem C 113:9573–9580

    Article  CAS  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P (2009c) An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure. Nanotechnology 20:225104

    Article  PubMed  CAS  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Hafeli UO, Stroeve P (2010) A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf B Biointerfaces 75:300–309

    Article  CAS  PubMed  Google Scholar 

  • Malvindi MA, De Matteis V, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A, Cingolani R, Pompa PP (2014) Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One 9(1):e85835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marcus M, Karni M, Baranes K, Levy I, Alon N, Margel S et al (2016) Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations. J Nanobiotechnol 14(1):37

    Article  CAS  Google Scholar 

  • Martinez-Cabanas M, Lopez-Garcia M, Barriada JL, Herrero R, Sastre de Vicente ME (2016) Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal. Chem Eng J 301:83–91

    Article  CAS  Google Scholar 

  • Mazumder JA, Ahmad R, Sardar M (2016) Reusable magnetic nanobiocatalyst for synthesis of silver and gold nanoparticles. Int J Biol Macromol 93(Pt A):66–74

    Article  CAS  PubMed  Google Scholar 

  • Mehta RV, Upadhyay RV, Charles SW, Ramchand CN (1997) Direct binding of protein to magnetic particles. Biotechnol Tech 11:493–496

    Article  CAS  Google Scholar 

  • Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health Part C: Environ Carcinog Ecotoxicol Rev 34:1–32

    Article  CAS  Google Scholar 

  • Mistry N, Stokes AM, Gambrell JV, Quarles CC (2014) Nitrite induces the extravasation of iron oxide nanoparticles in hypoxic tumor tissue. NMR Biomed 27(4):425–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    CAS  PubMed  Google Scholar 

  • Mukherjee R, Sinha A, Lama Y, Kumar V (2015) Utilization of zero valent iron (ZVI) particles produced from steel industry waste for in-situ remediation of ground water contaminated with organo-chlorine pesticide heptachlor. Int J Environ Res 9:19–26

    CAS  Google Scholar 

  • Muller K, Skepper JN, Tang TY, Graves MJ, Patterson AJ, Corot C, Lancelot E, Thompson PW, Brown AP, Gillard JH (2008) Atorvastatin and uptake of ultrasmall superparamagnetic iron oxide nanoparticles (ferumoxtran-10) in human monocyte-macrophages: implications for magnetic resonance imaging. Biomaterials 29(17):2656–2662

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Aarthi N, Kovendan K, Panneerselvam C, Chandramohan B, Kumar PM, Amerasan D, Paulpandi M, Chandirasekar R, Dinesh D (2015) Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitol Res 114:3657–3664

    Article  PubMed  Google Scholar 

  • Namvar F, Rahman HS, Mohamad R, Baharara J, Mahdavi M, Amini E, Chartrand MS, Yeap SK (2014) Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomedicine 9:2479–2488

    Article  PubMed  PubMed Central  Google Scholar 

  • Norouz Dizaji A, Yilmaz M, Piskin E (2016) Silver or gold deposition onto magnetite nanoparticles by using plant extracts as reducing and stabilizing agents. Artif Cells Nanomed Biotechnol 44(4):1109–1115

    CAS  PubMed  Google Scholar 

  • Owlad M, Aroua MK, Daud WAW, Baroutian S (2009) Removal of hexavalent chromium–contaminated water and wastewater: a review. Water Air Soil Pollut 200:59–77

    Article  CAS  Google Scholar 

  • Pardoe H, Clark P, Pierre TS, Moroz P, Jones S (2003) A magnetic resonance imaging based method for measurement of tissue iron concentration in liver arterially embolized with ferromagnetic particles designed for magnetic hyperthermia treatment of tumors. J Magn Reson Imaging 21:483–488

    Article  CAS  Google Scholar 

  • Park JY, Choi ES, Baek MJ, Lee GH, Woo S, Chang Y (2009) Water-soluble ultra small paramagnetic or superparamagnetic metal oxide nanoparticles for molecular MR imaging. Eur J Inorg Chem 17:2477–2481

    Article  CAS  Google Scholar 

  • Park YC, Smith JB, Pham T, Whitaker RD, Sucato CA, Hamilton JA, Bartolak-Suki E, Wong JY (2014) Effect of PEG molecular weight on stability, T2 contrast, cytotoxicity, and cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs). Colloids Surf B Biointerfaces 119:106–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pottler M, Staicu A, Zaloga J, Unterweger H, Weigel B, Schreiber E, Hofmann S, Wiest I, Jeschke U, Alexiou C, Janko C (2015) Genotoxicity of superparamagnetic iron oxide nanoparticles in granulosa cells. Int J Mol Sci 16(11):26280–26290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    PubMed  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

  • Prasad R, Jha A and Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

  • Prosen L, Prijic S, Music B, Lavrencak J, Cemazar M, Sersa G (2013) Magnetofection: a reproducible method for gene delivery to melanoma cells. Biomed Res Int 2013:209452

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramasahayam SK, Gunawan G, Finlay C, Viswanathan T (2012) Renewable resource-based magnetic nanocomposites for removal and recovery of phosphorous from contaminated waters. Water Air Soil Pollu 223(8):4853–4863

    Article  CAS  Google Scholar 

  • Ren Y, Rivera JG, He L, Kulkarni H, Lee DK, Messersmith PB (2011) Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol 11:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh Y, Vali H, Phelps TJ, Moon JW (2006) Extracellular synthesis of magnetite and metal-substituted magnetite nanoparticles. J Nanosci Nanotechnol 6(11):3517–3520

    Article  CAS  PubMed  Google Scholar 

  • Rossi LM, Quach AD, Rosenzweig Z (2004) Glucose oxidase–magnetite nanoparticle bioconjugate for glucose sensing. Anal Bioanal Chem 380(4):606–613

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Alvarez G, Muhammed M, Zagorodni AA (2006) Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61:4625–4633

    Article  CAS  Google Scholar 

  • Schutz CA, Staedler D, Crosbie-Staunton K, Movia D, Chapuis Bernasconi C, Kenzaoui BH, Prina-Mello A, Juillerat-Jeanneret L (2014) Differential stress reaction of human colon cells to oleic-acid-stabilized and unstabilized ultrasmall iron oxide nanoparticles. Int J Nanomedicine 9:3481–3498

    PubMed  PubMed Central  Google Scholar 

  • Schweiger C, Hartmann R, Zhang F, Parak WJ, Kissel TH, Rivera GP (2012) Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotechnol 10:28

    Article  CAS  Google Scholar 

  • Seneterre E, Weissleder R, Jaramillo D et al (1991) Bone marrow: ultrasmall superparamagnetic iron oxide for MR imaging. Radiology 179:529–533

    Article  CAS  PubMed  Google Scholar 

  • Senthil M, Ramesh C (2012) Biogenic synthesis of Fe3O4 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. J Nanomater Biostruct 7:1655–1660

    Google Scholar 

  • Shahwan T, Abu Sirriah S, Nairat M, Boyac E, Eroğlu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266

    Article  CAS  Google Scholar 

  • Shameli K (2013) Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method. Int J Nanomedicine 8:1817–1823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shameli K, Bin Ahmad M, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, Mahdavi M, Abdollahi Y (2012) Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int J Mol Sci 13:6639–6650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugam S, Thandavan K, Gandhi S, Sethuraman S, Rayappan JB, Krishnan UM (2011) Development and evaluation of a highly sensitive rapid response enzymatic nanointerfaced biosensor for detection of putrescine. Analyst 136(24):5234–5240

    Article  CAS  PubMed  Google Scholar 

  • Sharma G, Kodali V, Gaffrey M, Wang W, Minard KR, Karin NJ, Teeguarden JG, Thrall BD (2014) Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose–response profiles in vitro. Nanotoxicology 8(6):663–675

    Article  CAS  PubMed  Google Scholar 

  • Shen CC, Liang HJ, Wang CC, Liao MH, Jan TR (2012) Iron oxide nanoparticles suppressed T helper 1 cell–mediated immunity in a murine model of delayed-type hypersensitivity. Int J Nanomedicine 7:2729–2737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen S, Wu L, Liu J, Xie M, Shen H, Qi X, Yan Y, Ge Y, Jin Y (2015) Core–shell structured Fe3O4@TiO2–doxorubicin nanoparticles for targeted chemo-sonodynamic therapy of cancer. Int J Pharm 486(1–2):380–388

    Article  CAS  PubMed  Google Scholar 

  • Shevtsov MA, Nikolaev BP, Yakovleva LY, Marchenko YY, Dobrodumov AV, Mikhrina AL, Martynova MG, Bystrova OA, Yakovenko IV, Ischenko AM (2014) Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION–EGF) for targeting brain tumors. Int J Nanomedicine 9:273–287

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla VK, Singh RP, Pandey AC (2010) Black pepper assisted biomimetic synthesis of silver nanoparticles. J Alloys Compd 507(1):L13–L16

    Article  CAS  Google Scholar 

  • Simberg D, Park JH, Karmali PP, Zhang WM, Merkulov S, McCrae K, Bhatia SN, Sailor M, Ruoslahti E (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30(23–24):3926–3933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RP (2016) Nanobiosensors: potentiality towards bioanalysis. J Bioanal Biomed 8:e143. https://doi.org/10.4172/1948-593X.1000e143

    Article  Google Scholar 

  • Singh RP (2017) Application of nanomaterials towards development of nanobiosensors and their utility in agriculture (Chapter 14). In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology: an agricultural paradigm. Springer, New York, pp 293–303

    Chapter  Google Scholar 

  • Singh RP (2019) Nanocomposites: recent trends, developments and applications (Chapter 2). In: Aliofkhazraei M (ed) Carbon nanotube and graphene composites. Advances in nanostructured composites, vol 1. CRC Press, Boca Raton, p 552

    Google Scholar 

  • Singh RP, Choi JW (2010) Bio-nanomaterials for versatile bio-molecules detection technology [letter]. Adv Mat Lett 1(1):83–84

    Article  CAS  Google Scholar 

  • Singh RP, Oh BK, Choi JW (2010) Application of peptide nucleic acid towards development of nanobiosensor arrays. Bioelectrochemistry 79(2):153–161

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Shukla VK, Yadav RS, Sharma PK, Singh PK, Pandey AC (2011) Biological approach of zinc oxide nanoparticles formation and its characterization. Adv Mater Lett 2(4):313–317

    Article  CAS  Google Scholar 

  • Singh RP, Choi JW, Tiwari A, Pandey AC (2012a) Utility and potential application of nanomaterials in medicine. In: Tiwari A, Ramalingam M, Kobayashi H, Turner APF (eds) Biomedical materials and diagnostic devices. Wiley, Hoboken. https://doi.org/10.1002/9781118523025.ch7

    Chapter  Google Scholar 

  • Singh RP, Choi JW, Pandey AC (2012b) Smart nanomaterials for biosensors, biochips and molecular bioelectronics (Chapter 1). In: Li S, Ge Y, Li H (eds) Smart nanomaterials for sensor application. Bentham Science Publisher, Dubai, pp 3–41

    Chapter  Google Scholar 

  • Singh RP, Kumar K, Rai R, Tiwari A, Choi JW, Pandey AC (2012c) Synthesis, characterization of metal oxide based nanomaterials and its application in biosensing (Chapter 11). In: Rai R (ed) Synthesis, characterization and application of smart material. Nova Science Publishers, Inc, New York, pp 225–238

    Google Scholar 

  • Singh RP, Choi JW, Tiwari A, Pandey AC (2012d) Biomimetic materials toward application of nanobiodevices (Chapter 20). In: Tiwari A, Mishra AK, Kobayashi H, Turner AP (eds) Intelligent nanomaterials: processes, properties, and applications. Wiley, Hoboken, pp 741–782

    Chapter  Google Scholar 

  • Singh RP, Choi JW, Tiwari A, Pandey AC (2014) Functional nanomaterials for multifarious nanomedicine. In: Tiwari A, Turner APF (eds) Biosensors nanotechnology. Wiley, Hoboken. https://doi.org/10.1002/9781118773826.ch6

    Chapter  Google Scholar 

  • Skaat H, Corem-Slakmon E, Grinberg I, Last D, Goez D, Mardor Y, Margel S (2013) Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-β fibrils. Int J Nanomedicine 8:4063–4076

    PubMed  PubMed Central  Google Scholar 

  • Stampar F, Solar A, Hudina M, Veberic R, Colaric M (2006) Traditional walnut liqueur—cocktail of phenolics. Food Chem 95:627–631

    Article  CAS  Google Scholar 

  • Starmans LW, Burdinski D, Haex NP, Moonen RP, Strijkers GJ, Nicolay K, Grüll H (2013) Iron oxide nanoparticle-micelles (ION-micelles) for sensitive (molecular) magnetic particle imaging and magnetic resonance imaging. PLoS One 8(2):e57335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JH, Zhang YL, Nie CH, Qian SP, Yu XB, Xie HY, Zhou L, Zheng SS (2012) In vitro labeling of endothelial progenitor cells isolated from peripheral blood with superparamagnetic iron oxide nanoparticles. Mol Med Rep 6(2):282–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Yathindranath V, Worden M, Thliveris JA, Chu S, Parkinson FE, Hegmann T, Miller DW (2013) Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system–relevant cell culture models. Int J Nanomedicine 8:961–970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sungsuwan S, Yin Z, Huang X (2015) Lipopeptide-coated iron oxide nanoparticles as potential glycoconjugate-based synthetic anticancer vaccines. ACS Appl Mater Interfaces 7(31):17535–17544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y (2011) Anti-cancer natural products isolated from Chinese medicinal herbs. Chin Med 6:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tartaj P, Serna CJ (2003) Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites. J Am Chem Soc 125:15754–15755

    Article  CAS  PubMed  Google Scholar 

  • Tartaj P, González‐Carreño T, Serna CJ (2004) From hollow to dense spheres: control of dipolar interactions by tailoring the architecture in colloidal aggregates of superparamagnetic iron oxide nanocrystals. Adv Mater 16:529–533

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010a) Biological synthesis of metallic nanoparticles. Nanomed Nanotechol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010b) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262

    Article  CAS  PubMed  Google Scholar 

  • Thomsen LB, Linemann T, Pondman KM, Lichota J, Kim KS, Pieters RJ, Visser GM, Moos T (2013) Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS Chem Neurosci 4(10):1352–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toki S, Omary RA, Wilson K, Gore JC, Peebles RS Jr, Pham W (2013) A comprehensive analysis of transfection-assisted delivery of iron oxide nanoparticles to dendritic cells. Nanomedicine 9(8):1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Tomitaka A, Arami H, Gandhi S, Krishnan KM (2015) Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale 7(40):16890–16898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng SH, Chou MY, Chu IM (2015) Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy. Int J Nanomedicine 10:3663–3685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya K, Nitta N, Sonoda A, Nitta-Seko A, Ohta S, Otani H, Takahashi M, Murata K, Murase K, Nohara S, Mukaisho K (2011) Histological study of the biodynamics of iron oxide nanoparticles with different diameters. Int J Nanomedicine 6:1587–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchiyama MK, Toma SH, Rodrigues SF, Shimada AL, Loiola RA, Cervantes Rodriguez HJ, Oliveira PV, Luz MS, Rabbani SR, Toma HE, Poliselli Farsky SH, Araki K (2015) Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool. Int J Nanomedicine 10:4731–4746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valle JP et al (2017) Sorption of Cr(III) and Cr(VI) to K2Mn4O9 nanomaterial a study of the effect of pH, time, temperature and interferences. Microchem J 133:614–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkateswarlu S, Rao YS, Balaji T, Prathima B, Jyothi N (2013) Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Mater Lett 100:241–244

    Article  CAS  Google Scholar 

  • Vidal-Vidal J, Rivas J, Lopez-Quintela M (2006) Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surf A Physicochem Eng Asp 288:44–51

    Article  CAS  Google Scholar 

  • Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Sonochemical synthesis and characterization of pure nanometersized Fe3O4 particles. Mater Sci Eng A 286:101–105

    Article  Google Scholar 

  • Vincent S, Kovendan K, Chandramohan B, Kamalakannan S, Kumar PM, Vasugi C, Praseeja C, Subramaniam J, Govindarajan M, Murugan K (2017) Swift fabrication of silver nanoparticles using Bougainvillea glabra: potential against the Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). J Clust Sci 28:37–58

    Article  CAS  Google Scholar 

  • Vuong QV, Hirun S, Chuen TL, Goldsmith CD, Bowyer MC, Chalmers AC, Phillips PA, Scarlett CJ (2014) Physicochemical composition, antioxidant and anti-proliferative capacity of a lilly pilly (Syzygium paniculatum) extract. J Herb Med 4:134–140

    Article  Google Scholar 

  • Wahajuddin S, Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YX (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1:35–40

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Cuschieri A (2013) Tumour cell labelling by magnetic nanoparticles with determination of intracellular iron content and spatial distribution of the intracellular iron. Int J Mol Sci 14(5):9111–9125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  • Wang L, Park HY, Lim SII, Schadt MJ, Mott D, Luo J, Wang X, Zhong CJ (2008) Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles. J Mat Chem 18:2629–2635

    Article  CAS  Google Scholar 

  • Wang YXJ, Xuan S, Port M, Idee JM (2013) Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr Pharm Des 19:6575–6593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419

    Article  CAS  Google Scholar 

  • Wang Y, Hu J, Dai Z, Li J, Huang J (2016 Nov) In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure. Plant Physiol Biochem 108:353–360

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Insin N, Lee J, Han HS, Cordero JM, Liu W, Bawendi MG (2012) Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano Lett 12(1):22–25

    Article  CAS  PubMed  Google Scholar 

  • Weissleder R, Elizondo G, Wittenberg J, Lee AS, Josephson L, Brady TJ (1990) Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175:494–498

    Article  CAS  PubMed  Google Scholar 

  • Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J (2009) Three dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54:L1–L10

    Article  CAS  PubMed  Google Scholar 

  • West DL, White SB, Zhang Z, Larson AC, Omary RA (2014) Assessment and optimization of electroporation-assisted tumoral nanoparticle uptake in a nude mouse model of pancreatic ductal adenocarcinoma. Int J Nanomedicine 9:4169–4176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Widder KJ, Senyei AE, Scarpelli DG (1978) Magnetic microspheres—model system for site specific drug delivery in vivo. Proc Soc Exp Biol Med 158:141–146

    Article  CAS  PubMed  Google Scholar 

  • Williams JP, Southern P, Lissina A, Christian HC, Sewell AK, Phillips R, Pankhurst Q, Frater J (2013) Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity. Int J Nanomedicine 8:2543–2554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Zhang J, Tong Y, Xu X (2009) Chromium(VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles. J Hazard Mater 172(2–3):1640–1645

    Article  CAS  PubMed  Google Scholar 

  • Wu YN, Li-Xing Y, Xuan-Yu S, I-Chen L, Joanna MB, Ratinac KR, Dong-Hwang C, Pall T, Dar-Bin S, Filip B (2011a) The selective growth inhibition of oral cancer by iron core–gold shell nanoparticles through mitochondria mediated autophagy. Biomaterials 32:4565–4573

    Article  CAS  PubMed  Google Scholar 

  • Wu YN, Chen DH, Shi XY, Lian CC, Wang TY, Yeh CS, Ratinac KR, Thordarson P, Braet F, Shieh DB (2011b) Cancer-cell-specific cytotoxicity of non-oxidized iron elements in iron core–gold shell nanoparticles. Nanomedicine: NBM 7:420–427

    Article  CAS  Google Scholar 

  • Wu H, Yin JJ, Wamer WG, Zeng M, Lo YM (2014) Reactive oxygen species–related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal 22(1):86–94

    Article  CAS  PubMed  Google Scholar 

  • Xin BJ, Si SF, Xing GW (2010) Protease immobilization on gamma-Fe2O3/Fe3O4 magnetic nanoparticles for the synthesis of oligopeptides in organic solvents. Chem Asian J 5(6):1389–1394

    CAS  PubMed  Google Scholar 

  • Xu C, Sun S (2013) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65:732–743

    Article  CAS  PubMed  Google Scholar 

  • Yew YP, Shameli K, Miyake M, Kuwano N, Khairudin NBBA, Mohamad SEB, Lee KX (2016) Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res Lett 11:1–7

    Article  CAS  Google Scholar 

  • Yoo MK, Park IY, Kim IY, Park IK, Kwon JS, Jeong HJ et al (2008) Superparamagnetic iron oxide nanoparticles coated with mannan for macrophage targeting. J Nanosci Nanotechnol 8(10):5196–5202

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Sun D (2010) Super paramagnetic iron oxide nanoparticle “theranostics” for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery. Expert Rev Clin Pharmacol 3:117–130

    Article  CAS  PubMed  Google Scholar 

  • Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem 47(29):5362–5365

    Article  CAS  Google Scholar 

  • Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B (1999) Physical and chemical properties of magnetite and magnetite–polymer nanoparticles and their colloidal dispersions. J Colloid Interface Sci 212:49–57

    Article  CAS  PubMed  Google Scholar 

  • Zaloga J, Janko C, Agarwal R, Nowak J, Müller R, Boccaccini AR, Lee G, Odenbach S, Lyer S, Alexiou C (2015) Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles. Int J Mol Sci 16(5):9368–9384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553–1561

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Jiao Z, Yao W (2014) A simple solvothermal process for fabrication of a metal–organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples. J Chromatogr A 1371:74–81

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang X, Zou J, Liu Y, Wang J (2015) Effects of an 11-nm DMSA-coated iron nanoparticle on the gene expression profile of two human cell lines, THP-1 and HepG2. J Nanobiotechnol 13:3

    Article  CAS  Google Scholar 

  • Zhang Y, Wang Z, Li X, Wang L, Yin M, Wang L, Chen N, Fan C, Song H (2016) Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in Drosophila. Adv Mater 28(7):1387–1393

    Article  CAS  PubMed  Google Scholar 

  • Zhao D-L, Teng P, Xu Y, Xia Q-S, Tang J-T (2010) Magnetic and inductive heating properties of Fe3O4/polyethylene glycol composite nanoparticles with core–shell structure. J Alloys Compd 502:392–395

    Article  CAS  Google Scholar 

  • Zhou H, Fan T, Zhang D (2011) Biotemplated materials for sustainable energy and environment: current status and challenges. Chem Sustain Energy Mater 4(10):1344–1387

    CAS  Google Scholar 

  • Zhou X, Jing G, Lv B, Zhou Z, Zhu R (2016) Highly efficient removal of chromium(VI) by Fe/Ni bimetallic nanoparticles in an ultrasound-assisted system. Chemosphere 160:332–341

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10(6):713–717

    Article  CAS  PubMed  Google Scholar 

  • Zhu MT, Wang Y, Feng WY, Wang B, Wang M, Ouyang H, Chai ZF (2010) Oxidative stress and apoptosis induced by iron oxide nanoparticles in cultured human umbilical endothelial cells. J Nanosci Nanotechnol 10(12):8584–8590

    Article  CAS  PubMed  Google Scholar 

  • Ziv-Polat O, Skaat H, Shahar A, Margel S (2012) Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering. Int J Nanomedicine 7:1259–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks Indira Gandhi National Tribal University (IGNTU), Amarkantak, Madhya Pradesh, India, for providing facilities to prepare this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R.P. (2019). Potential of Biogenic Plant-Mediated Iron and Iron Oxide Nanoparticles and Their Utility. In: Prasad, R. (eds) Plant Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16379-2_4

Download citation

Publish with us

Policies and ethics