Skip to main content

Nanotechnology: An Emerging Tool for Management of Biotic Stresses in Plants

  • Chapter
  • First Online:

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Biotic stresses are the major factors limiting the crop productivity worldwide. Indiscriminate application of chemicals used for crop protection is the serious concern for health and environmental hazards. Moreover, such practices deteriorate the soil health and increase resistance in phytopathogens and pests. Nanotechnology, the novel interdisciplinary technique developed in last decades provides the sustainable solution. Nanotechnology has the potential to revolutionize agricultural practices. Nanoparticles (NPs), nanobiosensors, quantum dots (QDs), nanobarcodes, and microRNA (miRNA)-based approach have potential role in rapid diagnosis and combating insect pests and diseases in plants. This chapter deals with potential use of NMs in crop protection for better eco-friendly management against biotic stresses in plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd-Elsalam K and Prasad R (2018) Nanobiotechnology applications in plant protection. Springer International Publishing (ISBN 978-3-319-91161-8) https://www.springer.com/us/book/9783319911601

  • Abigail EA, Chidambaram R (2017) Nanotechnology in herbicide resistance. In Nanostructured Mat Fabrication Appl In Tech. https://doi.org/10.5772/intechopen.68355

    Google Scholar 

  • Abkhoo J, Panjehkeh N (2017) Evaluation of antifungal activity of silver nanoparticles on Fusarium oxysporum. Int J Inf Secur 4:41126

    Google Scholar 

  • Abobatta WF (2018) Nanotechnology application in agriculture. Acta Sci Agric 2(6):99–102

    Google Scholar 

  • Acharyulu NPS, Dubey RS, Swaminadham V, Kalyani RL, Kollu P, Pammi SVN (2014) Green synthesis of CuO nanoparticles using Phyllanthus amarusleaf extract and their antibacterial activity against multidrug resistance bacteria. Int J Eng Res Technol 3:639–641

    Google Scholar 

  • Acosta C, Barat JM, Martinez-Manez R, Sancenon F, Llopis S, Gonzalez N, Martorell P (2018) Toxicological assessment of mesoporous silica particles in the nematode Caenorhabditis elegans. Environ Res 166:61–70

    Article  CAS  PubMed  Google Scholar 

  • Adak T, Kumar J, Dey D, Shakil NA, Walia S (2012) Residue and bio-efficacy evaluation of controlled release formulations of imidacloprid against pests in soybean (Glycine max). J Environ Sci Health B47:226–231

    Article  CAS  Google Scholar 

  • Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242(3):263–269

    Article  CAS  PubMed  Google Scholar 

  • Ahmed AI (2017) Chitosan and silver nanoparticles as control agents of some Faba bean spot diseases. J Plant Pathol Microbiol 8(9). https://doi.org/10.4172/2157-7471.1000421

  • Ahmed S, Ikram S (2015) Silver nanoparticles: one pot green synthesis using Terminalia arjuna extract for biological application. J Nanomed Nanotechnol 6:309. https://doi.org/10.4172/2157-7439.1000309

    Article  CAS  Google Scholar 

  • Ai T, Zhang L, Gao Z, Zhu CX, Guo X (2011) Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX andPVY in plants. Plant Biol 13:304–316

    Article  CAS  PubMed  Google Scholar 

  • Alkubaisi NAO, Aref NMMA, Hendi AA (2015) Method of inhibiting plant virus using gold nanoparticles U.S. Patent No. 9,198,434, 1 Dec 2015

    Google Scholar 

  • Amini Jam N, Kocheili F, Mossadegh MS, Rasekh A, Saber M (2014) Lethal and sublethal effects of imidacloprid and pirimicarb on the melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae) under laboratory conditions. J Crop Prot 3:89–98

    Google Scholar 

  • Ardakani AS (2013) Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita, and growth parameters of tomato. Nematol 15(6):671–677

    Article  CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and-negative bacterial strains. Int J Nanomedicine 7:3527–3535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baac H, Hajos JP, Lee J, Kim D, Kim SJ, Shuler ML (2006) Antibody based surface plasmon resonance detection of intact viral pathogen. Biotechnol Bioeng 94(4):815–819

    Article  CAS  PubMed  Google Scholar 

  • Badial AB, Sherman D, Stone A, Gopakumar A, Wilson V, Schneider W, King J (2018) Nanopore sequencing as a surveillance tool for plant pathogens in plant and insect tissues. Plant Dis 102(8):1648–1652

    Article  CAS  Google Scholar 

  • Banik S, Luque AP (2017) In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants. Span J Agric Res 15(2):23–37

    Article  Google Scholar 

  • Banik S, Sharma P (2011) Plant pathology in the era of nanotechnology. Indian Phytopath 64(2):120–127

    Google Scholar 

  • Bansal P, Duhan JS, Gahlawat SK (2014) Biogenesis of nanoparticles: a review. Afr J Biotechnol 13:2778–2785

    Article  CAS  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica-from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, pp 307–319

    Google Scholar 

  • Bhau BS, Phukon P, Ahmed R, Gogoi B, Borah B, Baruah J, Wann SB (2016) A novel tool of nanotechnology: nanoparticle mediated control of nematode infection in plants. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi

    Google Scholar 

  • Blechinger J, Bauer AT, Torrano AA, Gorzelanny C, Brauchle C, Schneider SW (2013) Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent. Small 9:3970–3980

    Article  CAS  PubMed  Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441

    Article  CAS  PubMed  Google Scholar 

  • Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355–363

    Article  CAS  Google Scholar 

  • Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12(18):2163–2175

    Article  CAS  PubMed  Google Scholar 

  • Brecht MO, Datnoff LE, Kucharek TA, Nagata RT (2004) Influence of silicon and chlorothalonil on the suppression of gray leaf spot and increase plant growth in St. Augustine grass. Plant Dis 88(4):338–344

    Article  CAS  PubMed  Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95:605–616

    Article  CAS  Google Scholar 

  • Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W (2018) Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front Microbiol 9:1–19

    Article  Google Scholar 

  • Chakravarty D, Erande MB, Late DJ (2015) Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants. J Sci Food Agric 95:2772–2778

    Article  CAS  PubMed  Google Scholar 

  • Chandra JH, Raj LA, Namasivayam SKR, Bharani RA (2013). Improved pesticidal activity of fungal metabolite from Nomureae rileyi with chitosan nanoparticles. Paper presented at International Conference. In Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), pp 387–390

    Google Scholar 

  • Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:15195. https://doi.org/10.1038/srep15195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chartuprayoon N, Rheem Y, Chen W, Myung N (2010) Detection of plant pathogen using LPNE grown single conducting polymer nanoribbon. In: Proceedings of the 218th electrochemicalsociety meeting, Las Vegas, Nevada, USA, pp 2278–2278

    Google Scholar 

  • Chaudhary V, Jangra S, Yadav NR (2018) Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection. J Nanobiotechnol 16:40. https://doi.org/10.1186/s12951-018-0368-8

    Article  CAS  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    Article  CAS  Google Scholar 

  • Chen JF, Ding HM, Wang JX, Shao L (2004) Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials 25(4):723–727

    Article  PubMed  CAS  Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96:17–31

    Google Scholar 

  • Chowdappa P, Gowda S (2013) Nanotechnology in crop protection: status and scope. Pest Manag Hortic Ecosyst 19:131–151

    Google Scholar 

  • Clement L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants-effects of size and crystalline structure. Chemosphere 90:1083–1090

    Article  CAS  PubMed  Google Scholar 

  • Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E, Rodrigo-Garcia J, Morales MI, Osuna-Avila P, Niu G, Hernandez-Viezcas JA, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiol Biochem 84:277–285

    Article  CAS  PubMed  Google Scholar 

  • Costa MVJD, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis and antioxidant response in Oryza sativa. Photosynthetica 54:110–119

    Article  CAS  Google Scholar 

  • Cromwell WA, Yang J, Starr JL, Jo YK (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46(3):261–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui HX, Sun CJ, Liu Q, Jiang J, Gu W (2010) Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In: International conference on Nanoagri Sao Pedr, Brazil, pp 28–33

    Google Scholar 

  • Cvjetko P, Milosic A, Domijan AM, Vinkovic-Vrcek I, Tolic S, Peharec Stefanic P, Letofsky-Papst I, Tkalec M, Balen B (2017) Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Saf 137:18–28

    Article  CAS  PubMed  Google Scholar 

  • Degliangeli F, Pompa PP, Fiammengo R (2014) Nanotechnology-based strategies for the detection and quantification of microRNA. Chem Eur J 20:9476–9492

    Article  CAS  PubMed  Google Scholar 

  • Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology 156:2630–2640

    Article  CAS  PubMed  Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3. https://doi.org/10.4081/nd.2013.e1

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nano Res 14:1–15

    Article  CAS  Google Scholar 

  • Du Z, Wang C, Tai X, Wang G, Liu X (2016) Optimization and characterization of biocompatible oil-in-water nanoemulsion for pesticide delivery. ACS Sustain Chem Eng 4:983–991

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Dujardin E, Peet C, Stubbs G, Culver JN, Mann S (2003) Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3:413–417

    Article  CAS  Google Scholar 

  • Duran N, Priscyla D, Marcato Alves OL, Gabriel IH, Souza D, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. https://doi.org/10.1186/1477-3155-3-8

    Article  Google Scholar 

  • Eastman PS, Ruan W, Doctolero M, Nuttall R, De Feo G, Park JS, Chen FF (2006) Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett 6(5):1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Eerikainen H, Watanabe W, Kauppinen E, Ahonen P (2003) Aerosol flow reactor method for the synthesis of drug nanoparticles. Eur J Pharm Biopharm 55:357–360

    Article  CAS  PubMed  Google Scholar 

  • El-bendary HM, El-Helaly AA (2013) First record nanotechnology in agricultural: silica nano-particles a potential new insecticide for pest control. Appl Sci Rep 4:241–246

    Google Scholar 

  • Elek N, Hoffman R, Raviv U, Resh R, Ishaaya I, Magdassi S (2010) Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Colloids Surf A Physicochem Eng Asp 372:66–72

    Article  CAS  Google Scholar 

  • El-Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8(4):968–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S (2015) Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta Mol Biomol Spectrosc 143:158–164

    Article  CAS  Google Scholar 

  • Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332

    Article  PubMed  CAS  Google Scholar 

  • Fauteux F, Chain F, Belzile F, Menzies JG, Belanger RR (2006) The protective role of silicon in the Arabidopsis–powdery mildew pathosystem. Proc Natl Acad Sci 103(46):17554–17559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotech Biol Med 5(4):382–386

    Article  CAS  Google Scholar 

  • Gallardo RV, Cruz JFO, Ortiz-Rodriguez OO (2016) Fungicidal effect of silver nanoparticles on toxigenic fungi in cocoa. Pesq Agropec Bras 51(12):1929–1936

    Article  Google Scholar 

  • Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO(2) treatment related to the changes of Rubisco activase? Biometals 21:211–217

    Article  CAS  PubMed  Google Scholar 

  • Gericke WF (1937) Hydroponics – crop production in liquid culture media. Science 85:177–178

    Article  CAS  PubMed  Google Scholar 

  • Gogoi R, Dureja P, Singh PK (2009) Nanoformulations a safer and effective option for agrochemicals. Ind Farm 59(8):7–12

    Google Scholar 

  • Goluch ED, Nam JM, Georganopoulou DG, Chiesl TN, Shaikh KA, Ryu KS, Liu C (2006) A bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip 6(10):1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Gopal M, Kumar R, Goswami A (2012) Nano-pesticides - a recent approach for pest control. J Plant Prot Sci 4(2):1–7

    Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257

    Article  CAS  Google Scholar 

  • Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G (2010) Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopest 3:394–399

    CAS  Google Scholar 

  • Gruere G, Clare N, Linda A (2011) Agricultural food and water nanotechnologies for the poor opportunities, constraints and role of the consultative Group on International Agricultural Research

    Google Scholar 

  • Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159(6):1551–1559

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Nanobiotechnology applications in plant protection (eds. Abd-Elsalam K and Prasad R), Springer International Publishing AG 247–266

    Google Scholar 

  • Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed Nanotech Biol Med 8(1):37–45

    Article  CAS  Google Scholar 

  • Haleemkhan AA, Naseem B, Vardhini BV (2015) Synthesis of nanoparticles from plant extracts. Int J Modern Chem Appl Sci 2:195–203

    Google Scholar 

  • Hazra DK, Megha P, Raza SK, Patanjali PK (2013) Patanjali formulation technology: key parameters for food safety with respect to agrochemicals use in crop protection. J Plant Prot Sci 5(2):1–19

    Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215

    Article  CAS  PubMed  Google Scholar 

  • Helaly AA, Bendary HME, Abdel-Wahab AS, El-Sheikh MAK, Elnagar S (2016) The silica nanoparticles treatment of squash foliage and survival and development of Spodoptera littoralis (Bosid.) larvae. J Entomol Zool Stud 4(1):175–180

    Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of in-vitro cultures and organogenic regeneration of banana. Aus J Crop Sci 8(4):612–624

    CAS  Google Scholar 

  • Huang XL, Bronstein LM, Retrum J, Dufort C, Tsvetkova I, Aniagyei S, Stein B, Stucky G, McKenna B, Remmes N, Baxter D, Kao CC, Dragnea B (2007) Self-assembled virus-like particles with magnetic cores. Nano Lett 7:2407–2416

    Article  CAS  PubMed  Google Scholar 

  • Hussain T (2017) Nanociedes: smart delivery system in agriculture and horticultural crops. Adv Plants Agric Res 6(6):00233. https://doi.org/10.15406/apar.2017.06.00233

    Article  Google Scholar 

  • Hwang I, Lee J, Hwang JH, Kim KJ, Lee DG (2012) Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J 279:1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Hwang IC, Kim TH, Bang SH, Kim KS, Kwon HR, Seo MJ, Yu YM (2011) Insecticidal effect of controlled release formulations of etofenprox based on nano-bio technique. J Fac Agri Kyushu Univ 56:33–40

    CAS  Google Scholar 

  • Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Nanotechnology (eds. Prasad R, Kumar M, Kumar V), Springer Nature Singapore 305–317

    Google Scholar 

  • Jain D, Kothari SL (2014) Green synthesis of silver nanoparticles and their application in plant virus inhibition. J Mycol Plant Pathol 44(1):21–24

    CAS  Google Scholar 

  • Jain K (2003) Nanodiagnostics: application of nanotechnology (NT) in molecular diagnostics. Expert Rev Mol Diagn 2:153–161

    Article  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Rao KB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84

    Article  CAS  PubMed  Google Scholar 

  • Jiang HS, Li M, Chang FY, Li W, Yin LY (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem 31:1880–1886

    Article  CAS  PubMed  Google Scholar 

  • Jiang HS, Qiu XN, Li GB, Li W, Yin LY (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33:1398–1405

    Article  CAS  PubMed  Google Scholar 

  • Jiang LC, Basri M, Omar D, Rahman MBA, Salleh AB, Rahman RN, Zaliah RN (2011) Physicochemical characterization of nonionic surfactants in oil-in-water (O/W) nanoemulsions for new pesticide formulations. Inter J Appl Sci Technol 1:131–142

    Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Joginder SD, Ravinder K, Naresh K, Pawan K, Kiran N et al (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Juhel G, Batisse E, Hugues Q, Daly D, van Pelt FN, O’Halloran J, Jansen MA (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105:328–336

    Article  CAS  PubMed  Google Scholar 

  • Kageyama S, Kitano S, Hirayama M, Nagata Y, Imai H (2008) Humoral immune responses in patients vaccinated with 1-146 HER-2 protein complexed with cholesteryl pullulan nanogel. Cancer Sci 99(3):601–607

    Article  CAS  PubMed  Google Scholar 

  • Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65:150–153

    Article  CAS  PubMed  Google Scholar 

  • Kashyap PL, Rai P, Sharma S, Chakdar H, Kumar S, Pandiyan K, Srivastava AK (2016) Nanotechnology for the detection and diagnosis of plant pathogens. Nanosci Food Agri 2:253–276

    Article  Google Scholar 

  • Kathiravan V, Ravi S, Ashokkumar S, Velmurugan S, Elumalai K, Khatiwada CP (2015) Green synthesis of silver nanoparticles using Croton sparsiflorusmorong leaf extract and their antibacterial and antifungal activities. Spectrochimica Acta Part A Mol Biomol Spectrosc 139:200–205

    Article  CAS  Google Scholar 

  • Khalil MMH, Ismail EH, Baghdady KZE, Mohamed D (2014) Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem 7:1131–1139

    Article  CAS  Google Scholar 

  • Khan MR, Haque Z, Kausar N (2014) Management of the root-knot nematode Meloidogyne graminicola infesting rice in the nursery and crop field by integrating seed priming and soil application treatments of pesticides. Crop Prot 63:15–25

    Article  CAS  Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231

    Article  CAS  Google Scholar 

  • Khatoon N, Mazumder JA, Sardar M (2017) Biotechnological applications of green synthesized silver nanoparticles. J Nanosci Curr Res 2:107. https://doi.org/10.4172/2572-0813.1000107

    Article  Google Scholar 

  • Khodakovskaya M, Silva KD, Biris AS, Dervishi E, Villagarica H (2012) Carbon nanotubes induce growth enhancement in tobacco cells. ACS Nano 6:2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle–plant interactions. Proc Natl Acad Sci U S A 108:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Kang HS, Chu GJ, Byun HS (2008) Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenom 135:15–18

    Article  CAS  Google Scholar 

  • Kim JH, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS, An HJ, Chang YS (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477–3485

    Article  CAS  PubMed  Google Scholar 

  • Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9(3):129–134

    Article  PubMed  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    Article  CAS  PubMed  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc 93:95–99

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological - An updated report. Saudi Pharm J 24:473–484

    Article  PubMed  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultra small anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39:194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lattanzio VM, Nivarlet N, Lippolis V, Gatta SD, Huet AC, Delahaut P, Visconti A (2012) Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal Chimacta 718:99–108

    Article  CAS  Google Scholar 

  • Le VN, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50

    Article  CAS  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Article  CAS  PubMed  Google Scholar 

  • Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B (2016) Uptake, translocation and physiological effects of magnetic iron oxide (γ- Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159:326–334

    Article  CAS  PubMed  Google Scholar 

  • Li J, Sang H, Guo H, Popko JT, He L, White JC, Dhankher OP, Jung G, Xing B (2017) Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Nanotechnol 28(15):155101. https://doi.org/10.1088/1361-6528/aa61f3

    Article  CAS  Google Scholar 

  • Li L, Hu J, Yang W, Alivisatos AP (2001) Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 1:349–351

    Article  CAS  Google Scholar 

  • Li Y, Cu YTH, Luo D (2005) Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol 23(7):885–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CJ, Basri M, Omar D, Rahman MBA, Salleh AB (2011) Self-assembly behaviour of alkylpolyglucosides (APG) in mixed surfactant-stabilized emulsions system. J Mol Liq 158(3):175–181

    Article  CAS  Google Scholar 

  • Lim D, Roh JY, Eom HJ, Choi JY, Hyun J, Choi J (2012) Oxidative stress related PMK 1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31(3):585–592

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luque APD, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65(5):540–545

    Article  CAS  Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants 3:25–32

    Google Scholar 

  • Maqueda C, Partal P, Villaverde J, Perez-Rodriguez JL (2009) Characterization of sepiolitegel- based formulations for controlled release of pesticides. Appl Clay Sci 46:289–295

    Article  CAS  Google Scholar 

  • Meng Y, Li Y, Galvani CD, Hao G, Turner JN, Burr TJ, Hoch HC (2005) Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 187(16):5560–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. J Plant Pathol 25:376–380

    Article  CAS  Google Scholar 

  • Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J Rl Soc Interface 9:3514–3527

    Article  CAS  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB (2017) Integrated approach of agri-nanotechnology: challenges and future trends. Front Plant Sci 8:471. https://doi.org/10.3389/fpls.2017.00471

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammad AK, Hassan A, Yasser MA, Mousa AA, Kamel AA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Equip 28(5):775–785

    Article  Google Scholar 

  • Mondal P, Kumar R, Gogoi R (2017) Azomethine based nano-chemicals: development, in vitro and in vivo fungicidal evaluation against Sclerotium rolfsii, Rhizoctonia bataticola and Rhizoctonia solani. Bioorg Chem 70:153–162

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol 1(10):414–419

    Google Scholar 

  • Nadi E, Aynehband A, Mojaddam M (2013) Effect of nano-iron chelate fertilizer on grain yield, protein percent and chlorophyll content of faba bean (Vicia faba L.) Int. J Biosci 3:267–272

    Google Scholar 

  • Nair PM, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion and molecular level changes. Environ Sci Pollut Res Int 21:12709–12022

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Namasivayam KRS, Aruna A, Gokila (2014) Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquate (AgNP-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Res J Biotech 9(9):19–27

    Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    Article  CAS  Google Scholar 

  • Nhan LV, Ma C, Rui Y, Liu S, Li X, Xing B, Liu L (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikalje AP (2015) Nanotechnology and its applications in medicine. Med Chem 5:2. https://doi.org/10.4172/2161-0444.1000247

    Article  CAS  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980

    Article  CAS  PubMed  Google Scholar 

  • Oluwaseun AC, Sarin NB (2017) Impacts of biogenic nanoparticle on the biological control of plant pathogens. Adv Biotech Micro 7(3). https://doi.org/10.19080/AIBM.2017.07.555711

  • Otles S, Yalcin B (2010) Nano-biosensors as new tool for detection of food quality and safety. Log Forum 6(4):67–70

    Google Scholar 

  • Panacek A, Kvytek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B110:16248–16253

    Article  CAS  Google Scholar 

  • Pandey P, IrulappanV BMV, Kumar MS (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537. https://doi.org/10.3389/fpls.2017.00537

    Article  PubMed  PubMed Central  Google Scholar 

  • Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil SA (2009) Economics of agri poverty: nano-bio solutions. Indian Agricultural Research Institute, New Delhi, Indian

    Google Scholar 

  • Patra P, Choudhury SR, Mandal S, Basu A, Goswami A, Gogoi R, Srivastava C, Kumar R, Gopal M (2013) Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. In: Advanced nanomaterials and nanotechnology. Springer, Berlin Heidelberg, pp 301–309

    Chapter  Google Scholar 

  • Patra P, Goswami A (2012) Zinc nitrate derived nano ZnO: fungicide for disease management of horticultural crops. Int J Innov Hort 1:79–84

    Google Scholar 

  • Patra P, Mitra S, Debnath N, Goswami A (2012) Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study. Langmuir 28(49):16966–16978

    Article  CAS  PubMed  Google Scholar 

  • Pestovsky YS, Martinez-Antonio A (2017) The use of nanoparticles and nanoformulations in agriculture. J Nanosci Nanotechnol 17(12):8699–8730

    Article  CAS  Google Scholar 

  • Petersen EJ, Henry TB, Zhao J, MacCuspie RI, Kirschling TL, Dobrovolskaia MA, Hackley V, Xing B, White JC (2014) Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ Sci Technol 48(8):4226–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips MA, Gran ML, Peppas NA (2010) Targeted nanodelivery of drugs and diagnostics. Nano Today 5(2):143–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piscureanu A, Pop T, Dogaru M, Piscureanu M, Manaila-Maximean D (2001) Influence of non-ionic surfactants on surface activity of pesticide colloidal systems. Colloids Surf A Physicochem Eng Asp 178:129–133

    Article  CAS  Google Scholar 

  • Pluskota A, Horzowski E, Bossinger O, vonMikecz A (2009) In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence. PLoS One 4(8):6622. https://doi.org/10.1371/journal.pone.0006622

    Article  CAS  Google Scholar 

  • Prameela KL (2017) Nanomaterial’s applications in agriculture. J Chem Pharm Sci 10(1):593–596

    CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 14(1):1–8. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Kumar V, Kumar M, and Choudhary D (2019) Nanobiotechnology in bioformulations. Springer International Publishing (ISBN 978-3-030-17061-5) https://www.springer.com/gp/book/9783030170608

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improves the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1955

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticle as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta Mol Biomol Spectrosc 12:384–387

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Ramanathan R, Field MR, O’Mullane AP, Smooker PM, Bhargava SK, Bansal V (2013) Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 5:2300–2306

    Article  CAS  PubMed  Google Scholar 

  • Rastogi A, Pospisil P (2010) Effect of exogenous hydrogen peroxide on biophoton emission from radish root cells. Plant Physiol Biochem 48:117–123

    Article  CAS  PubMed  Google Scholar 

  • Remus-Borel W, Menzies JG, Belanger RR (2005) Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol Mol Plant Pathol 66(3):108–115

    Article  CAS  Google Scholar 

  • Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43(10):3933–3940

    Article  CAS  PubMed  Google Scholar 

  • Rosen JE, Yoffe S, Meerasa A, Verma M, Gu FX (2011) Nanotechnology and diagnostic imaging: new advances in contrast agent technology. J Nanomed Nanotechnol 2(5):112. https://doi.org/10.4172/2157-7439.1000115

    Article  CAS  Google Scholar 

  • Rouhani M, Samih MA, Kalantari S (2012) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chilean J Agric Res 72(4):590–594

    Article  Google Scholar 

  • Sadurni N, Solans C, Azemar N, Garcia-Celma MJ (2005) Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical application. Eur J Pharm Sci 26(5):438–451

    Article  CAS  PubMed  Google Scholar 

  • Sahab AF, Waly AI, Sabbour MM, Nawar LS (2015) Synthesis, antifungal and insecticidal potential of Chitosan (CS)-g-poly (acrylic acid)(PAA) nanoparticles against some seed borne fungi and insects of soybean. Int J Chem Technol Res 8:589–598

    CAS  Google Scholar 

  • Saifuddin N, Wong CW, Nuryasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Eur J Chem 6:61–70

    CAS  Google Scholar 

  • Samuel U, Guggenbichler JP (2004) Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 23(1):S75–S78

    Article  CAS  PubMed  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504

    Article  CAS  PubMed  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, Velayutham K, Thomas J, Venkatesan J, Kim SK (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 7:968–976

    Article  CAS  PubMed  Google Scholar 

  • Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, Boparai H (2008) Remediation of atrazine-contaminated soil and water by nanozerovalent iron. Water Air Soil Pollut 192(1–4):349–359

    Article  CAS  Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for globalfood production losses and food security. Food Sec 19. https://doi.org/10.1007/s12571-012-0200-5

    Article  Google Scholar 

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolataan endemic and endangered medicinal tree taxon. Nano Vision 2:61–68

    Google Scholar 

  • Scharf A, Piechulek A, Von Mikecz A (2013) Effect of nanoparticles on the biochemical and behavioral aging phenotype of the nematode Caenorhabditis elegans. ACS Nano 7(12):10695–10703

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highlyspecific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell Online 18:1121–1133

    Article  CAS  Google Scholar 

  • Selva Preetha P, Balakrishnan N (2017) A review of nano fertilizers and their use and functions in soil. Int J Curr Microbiol App Sci 6:3117–3133

    Article  CAS  Google Scholar 

  • Senthilkumar SR, Sivakumar T (2014) Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci 6:461–465

    Google Scholar 

  • Shah SN, Steinmetz NF, Aljabali AAA, Lomonossoff GP, Evans DJ (2009) Environmentally benign synthesis of virus-templated, monodisperse, iron-platinum nanoparticles. Dalton Trans 40:8479–8480

    Article  CAS  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1):143–148

    Article  CAS  Google Scholar 

  • Sharma K, Sharma R, Shit S, Gupta S (2012a) Nanotechnological Application on Diagnosisof a Plant Disease. Paper presented at the international conference on Advances in Biological and Medical Sciences, Singapore, 15–16 July 2012

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012b) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot:217037. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92

    Google Scholar 

  • Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN (2010) Green synthesis of silver nanoparticles using Argemone Mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct 5:483–489

    Google Scholar 

  • Song S, Liu X, Jiang J, Qian Y, Zhang N, Wu Q (2009) Stability of triazophos in selfnanoemulsifying pesticide delivery system. Colloids Surf A Physicochem Eng Asp 350:57–62

    Article  CAS  Google Scholar 

  • Sousa GF, Gomes DG, Campos EV, Oliveira JL, Fraceto LF, Stolf-Moreira R, Oliveira HC (2018) Post-emergence herbicidal activity of nanoatrazine against susceptible weeds. Front Environ Sci 6:12. https://doi.org/10.3389/fenvs.2018.00012

    Article  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    CAS  PubMed  Google Scholar 

  • Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L, Cahill DM (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33(8):1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2013) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotech 8(3):133–137

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc., Massachusetts, p 781

    Google Scholar 

  • Taniguchi N (1974) On the basic concept of ‘nano-technology’, Proc Intl Conf Prod Eng Tokyo, Part II, Japan Society of Precision Engineering. http://nanodot.org/articles/01/06/04/1217257.shtml

  • Thakur RK, Shirkot P (2017) Potential of biogold nanoparticles to control plant pathogenic nematodes. J Bioanal Biomed 9:220–222

    CAS  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villasenor LM, Tripathi D, Villegas J (2013) Interaction of carbon nanotubes with mineral nutrients for the promotion of growth of tomato seedlings. Nano Stud 7:87–96

    Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotech 2(5):295–300

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3(3):1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Van Aken B (2015) Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr Opin Biotechnol 33:206–219

    Article  PubMed  CAS  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velmurugan N, Kumar GG, Han SS, Nahm KS, Lee YS (2009) Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles. Iran Polym J 18(5):383–392

    CAS  Google Scholar 

  • Venugopal NVS, Sainadh NVS (2016) Novel polymeric nanoformulation of mancozeb– an eco-friendly nanomaterial. Int J Nanosci 15:1–6

    Article  CAS  Google Scholar 

  • Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157(4):1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu X, Chen J, Han H, Yuan Z (2014a) Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal Pathogen. Carbon 68:798–806

    Article  CAS  Google Scholar 

  • Wang Y, Cui H, Sun C, Zhao X, Cui B (2014b) Construction and evaluation of controlled-release delivery system of Abamectin using porous silica nanoparticles as carriers. Nanoscale Res Lett 9(1):655. https://doi.org/10.1186/1556-276X-9-655

    Article  CAS  PubMed Central  Google Scholar 

  • Wang YA, Li JJ, Chen H, Peng X (2002) Stabilization of inorganic nanocrystals by organic dendrons. J Am Chem Soc 124(10):2293–2298

    Article  CAS  PubMed  Google Scholar 

  • Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci 2(3):40–44

    Google Scholar 

  • Warad HC, Ghosh SC, Thanachayanont C, Dutta J, Hilborn JG (2004) Highly luminescent manganese doped ZnS quantum dots for biological labelling. In Proceedings of international conference on smart materials (SMARTMAT-04), Chiang Mai, Thailand

    Google Scholar 

  • Weathers PJ, Zobel RW (1992) Aeroponics for the culture of organisms, tissues and cells. Biotechnol Adv 10:93–115

    Article  CAS  PubMed  Google Scholar 

  • Wight MM, Salazar CS, Demers JE, Clement DL, Rane KK, Crouch JA (2016) Sarcococca blight: use of whole-genome sequencing for fungal plant disease diagnosis. Plant Dis 100(6):1093–1100

    Article  CAS  Google Scholar 

  • Wong MH, Misra RP, Giraldo JP, Kwak SY, Son Y, Landry MP, Swan JW, Blankschtein D, Strano MS (2016) Lipid Exchange Envelope Penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett 16(2):1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:126

    CAS  Google Scholar 

  • Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J, Luo Z, Li P, Ding Y, Cui Y, Wu Q (2014) A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Sci Rep 4:5408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190

    Article  CAS  PubMed  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79:513–516

    Article  CAS  Google Scholar 

  • You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H (2012) The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39(9):9193–9201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–92

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hajong, M., Devi, N.O., Debbarma, M., Majumder, D. (2019). Nanotechnology: An Emerging Tool for Management of Biotic Stresses in Plants. In: Prasad, R. (eds) Plant Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16379-2_11

Download citation

Publish with us

Policies and ethics