Skip to main content

Multimodal Swarm Algorithm Based on the Collective Animal Behavior (CAB) for Circle Detection

  • Chapter
  • First Online:
New Advancements in Swarm Algorithms: Operators and Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 160))

  • 418 Accesses

Abstract

In engineering problems due to physical and cost constraints, the best results, obtained by a global optimization algorithm, cannot be realized always. Under such conditions, if multiple solutions (local and global) are known, the implementation can be quickly switched to another solution without much interrupting the design process. This chapter presents a swarm multimodal optimization algorithm named as the Collective Animal Behavior (CAB). Animal groups, such as schools of fish, flocks of birds, swarms of locusts and herds of wildebeest, exhibit a variety of behaviors including swarming about a food source, milling around a central location or migrating over large distances in aligned groups. These collective behaviors are often advantageous to groups, allowing them to increase their harvesting efficiency to follow better migration routes, to improve their aerodynamic and to avoid predation. In the proposed algorithm, searcher agents emulate a group of animals which interact to each other based on simple biological laws that are modeled as evolutionary operators. Numerical experiments are conducted to compare the proposed method with the state-of-the-art methods on benchmark functions. The proposed algorithm has been also applied to the engineering problem of multi circle detection, achieving satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahrari, A., Shariat-Panahi, M., Atai, A.A.: GEM: a novel evolutionary optimization method with improved neighbourhood search. Appl. Math. Comput. 210(2), 376–386 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. John Wiley, Chichester, UK (1966)

    MATH  Google Scholar 

  3. De Jong, K.: Analysis of the behavior of a class of genetic adaptive systems, Ph.D. thesis, University of Michigan, Ann Arbor, MI (1975)

    Google Scholar 

  4. Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems, Rep. No. STAN-CS-90-1314, Stanford University, CA (1990)

    Google Scholar 

  5. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)

    Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Boston, MA (1989)

    MATH  Google Scholar 

  7. de Castro, L.N., Von Zuben, F.J.: Artificial immune systems: Part I—Basic theory and applications. Technical report, TR-DCA 01/99 (1999)

    Google Scholar 

  8. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. İlker, B., Birbil, S., Shu-Cherng, F.: An electromagnetism-like mechanism for global optimization. J. Global Optim. 25, 263–282 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.G.S.A.: A gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)

    Article  MATH  Google Scholar 

  11. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  12. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continues engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933 (2004)

    Article  MATH  Google Scholar 

  13. Geem, Z.W.: Novel derivative of harmony search algorithm for discrete design variables. Appl. Math. Comput. 199, 223–230 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Gao, X.Z., Wang, X., Ovaska, S.J.: Uni-modal and multi-modal optimization using modified harmony search methods. Int. J. Innov. Comput. Inf. Control. 5(10A), 2985–2996 (2009)

    Google Scholar 

  15. Beasley, D., Bull, D.R., Matin, R.R.: A sequential niche technique for multimodal function optimization. Evol. Comput. 1(2), 101–125 (1993)

    Article  Google Scholar 

  16. Miller, B.L., Shaw, M.J.: Genetic algorithms with dynamic niche sharing for multimodal function optimization. In: Proceedings of the 3rd IEEE Conference on Evolutionary Computation, pp. 786–791 (1996)

    Google Scholar 

  17. Mahfoud, S.W.: Niching methods for genetic algorithms. Ph.D. dissertation, Illinois Genetic Algorithm Laboratory, University of Illinois, Urbana, IL (1995)

    Google Scholar 

  18. Mengshoel, O.J., Goldberg, D.E.: Probability crowding: deterministic crowding with probabilistic replacement. In: Banzhaf, W. (ed.), Proceedings of International Conferences GECCO-1999, Orlando, FL, pp. 409–416 (1999)

    Google Scholar 

  19. Yin, X., Germay, N.: A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization. In: Proceedings of the 1993 International Conference on Artificial Neural Networks and Genetic Algorithms, pp. 450–457 (1993)

    Google Scholar 

  20. Petrowski, A.: A clearing procedure as a niching method for genetic algorithms,. In: Proceeding of the 1996 IEEE International Conference on Evolutionary Computation, pp. 798–803. IEEE Press, New York (1996)

    Google Scholar 

  21. Li, J.P., Balazs, M.E., Parks, G.T., Glarkson, P.J.: A species conserving genetic algorithms for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)

    Article  Google Scholar 

  22. Lianga, Y., Kwong-Sak, L.: Genetic Algorithm with adaptive elitist-population strategies for multimodal function optimization. Appl. Soft Comput. 11, 2017–2034 (2011)

    Article  Google Scholar 

  23. Wei, L.Y., Zhao, M.: A niche hybrid genetic algorithm for global optimization of continuous multimodal functions. Appl. Math. Comput. 160(3), 649–661 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Castro, L.N., Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. Evol. Comput. 6, 239–251 (2002)

    Article  Google Scholar 

  25. Castro, L.N., Timmis, J.: An artificial immune network for multimodal function optimization. In: Proceedings of the 2002 IEEE International Conference on Evolutionary Computation. IEEE Press, New York, pp. 699–704 (2002)

    Google Scholar 

  26. Xu, Q., Lei, W., Si, J.: Predication based immune network for multimodal function optimization. Eng. Appl. Artif. Intell. 23, 495–504 (2010)

    Article  Google Scholar 

  27. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  28. Liang, Jj, Qin, A.K., Suganthan, P.N.: Comprehensive learning particle swarm optimizer for global optimization of multi-modal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Google Scholar 

  29. Chen, D.B., Zhao, C.X.: Particle swarm optimization with adaptive population size and its application. Appl. Soft Comput. 9(1), 39–48 (2009)

    Article  Google Scholar 

  30. Sumper, D.: The principles of collective animal behaviour. Philos. Trans. R. Soc. Lond. B Biol. Sci. 36(1465), 5–22 (2006)

    Article  Google Scholar 

  31. Petit, O., Bon, R.: Decision-making processes: the case of collective movements. Behav. Proc. 84, 635–647 (2010)

    Article  Google Scholar 

  32. Kolpas, A., Moehlis, J., Frewen, T., Kevrekidis, I.: Coarse analysis of collective motion with different communication mechanisms. Math. Biosci. 214, 49–57 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Couzin, I.: Collective cognition in animal groups. Trends in Cogn. Sci. 13(1), 36–43 (2008)

    Article  Google Scholar 

  34. Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Adv. Stud. Behav. 32, 1–75 (2003)

    Article  Google Scholar 

  35. Bode, N., Franks, D., Wood, A.: Making noise: emergent stochasticity in collective motion. J. Theor. Biol. 267, 292–299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Couzi, I., Krause, I., James, R., Ruxton, G., Franks, N.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  37. Couzin, I.D.: Collective minds. Nature 445, 715–728 (2007)

    Article  Google Scholar 

  38. Bazazi, S., Buhl, J., Hale, J.J., Anstey, M.L., Sword, G.A., Simpson, S.J., Couzin, I.D.: Collective motion and cannibalism in locust migratory bands. Curr. Biol. 18, 735–739 (2008)

    Article  Google Scholar 

  39. Atherton, T.J., Kerbyson, D.J.: Using phase to represent radius in the coherent circle Hough transform. In: Proceedings of IEE Colloquium on the Hough Transform. IEE, London (1993)

    Google Scholar 

  40. Xu, L., Oja, E., Kultanen, P.: A new curve detection method: Randomized Hough transform (RHT). Pattern Recognit. Lett. 11(5), 331–338 (1990)

    Article  MATH  Google Scholar 

  41. Ayala-Ramirez, V., Garcia-Capulin, C.H., Perez-Garcia, A., Sanchez-Yanez, R.E.: Circle detection on images using genetic algorithms. Pattern Recognit. Lett. 27, 652–657 (2006)

    Article  Google Scholar 

  42. Cuevas, Erik, Ortega-Sánchez, Noé, Zaldivar, Daniel, Pérez-Cisneros, Marco: Circle detection by harmony search optimization. J. Intell. Rob. Syst. 66(3), 359–376 (2012)

    Article  Google Scholar 

  43. Cuevas, Erik, Oliva, Diego, Zaldivar, Daniel, Pérez-Cisneros, Marco, Sossa, Humberto: Circle detection sing electro-magnetism optimization. Inf. Sci. 182(1), 40–55 (2012)

    Article  Google Scholar 

  44. Cuevas, Erik, Zaldivar, Daniel, Pérez-Cisneros, Marco, Ramírez-Ortegón, Marte: Circle detection using discrete differential evolution optimization. Pattern Anal. Appl. 14(1), 93–107 (2011)

    Article  MathSciNet  Google Scholar 

  45. Dasgupta, Sambarta, Das, Swagatam, Biswas, Arijit, Abraham, Ajith: Automatic circle detection on digital images with an adaptive bacterial foraging algorithm. Soft. Comput. 14(11), 1151–1164 (2010)

    Article  Google Scholar 

  46. Bode, N., Wood, A., Franks, D.: The impact of social networks on animal collective motion. Anim. Behav. 82(1), 29–38 (2011)

    Article  Google Scholar 

  47. Lemasson, B., Anderson, J., Goodwin, R.: Collective motion in animal groups from a neurobiological perspective: The adaptive benefits of dynamic sensory loads and selective attention. J. Theor. Biol. 261(4), 501–510 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Bourjade, M., Thierry, B., Maumy, M., Petit, O.: Decision-making processes in the collective movements of Przewalski horses families Equus ferus Przewalskii: influences of the environment. Ethology 115, 321–330 (2009)

    Article  Google Scholar 

  49. Banga, A., Deshpande, S., Sumanab, A., Gadagkar, R.: Choosing an appropriate index to construct dominance hierarchies in animal societies: a comparison of three indices. Anim. Behav. 79(3), 631–636 (2010)

    Article  Google Scholar 

  50. Hsu, Y., Earley, R., Wolf, L.: Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biol. Rev. 81(1), 33–74 (2006)

    Article  Google Scholar 

  51. Broom, M., Koenig, A., Borries, C.: Variation in dominance hierarchies among group-living animals: modeling stability and the likelihood of coalitions. Behav. Ecol. 20, 844–855 (2009)

    Article  Google Scholar 

  52. Bayly, K.L., Evans, C.S., Taylor, A.: Measuring social structure: a comparison of eight dominance indices. Behav. Proc. 73, 1–12 (2006)

    Article  Google Scholar 

  53. Conradt, L., Roper, T.J.: Consensus decision-making in animals. Trends Ecol. Evol. 20, 449–456 (2005)

    Article  Google Scholar 

  54. Okubo, A.: Dynamical aspects of animal grouping. Adv. Biophys. 22, 1–94 (1986)

    Article  Google Scholar 

  55. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioural model. Comp. Graph. 21, 25–33 (1987)

    Article  Google Scholar 

  56. Gueron, S., Levin, S.A., Rubenstein, D.I.: The dynamics of mammalian herds: from individual to aggregations. J. Theor. Biol. 182, 85–98 (1996)

    Google Scholar 

  57. Czirok, A., Vicsek, T.: Collective behavior of interacting self-propelled particles. Phys. A 281, 17–29 (2000)

    Article  Google Scholar 

  58. Ballerini, M.: Interaction ruling collective animal behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. U.S.A. 105, 1232–1237 (2008)

    Article  Google Scholar 

  59. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)

    Google Scholar 

  60. Gandomi, A.H., Yang, X.-S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. https://doi.org/10.1007/s00366-011-0241-y

  61. Zang, H., Zhang, S., Hapeshi, K.: A review of nature-inspired algorithms. J. Bionic Eng. 7, S232–S237 (2010)

    Article  Google Scholar 

  62. Gandomi, A., Alavi, A.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  63. Bresenham, J.E.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20, 100–106 (1977)

    Article  MATH  Google Scholar 

  64. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)

    Article  MathSciNet  Google Scholar 

  65. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special session on real parameter optimization. J. Heurist. (2008). https://doi.org/10.1007/s10732-008-9080-4

  66. Santamaría, J., Cordón, O., Damas, S., García-Torres, J.M., Quirin, A.: Performance evaluation of memetic approaches in 3D reconstruction of forensic objects. Soft Comput. (2008). https://doi.org/10.1007/s00500-008-0351-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas, E., Fausto, F., González, A. (2020). Multimodal Swarm Algorithm Based on the Collective Animal Behavior (CAB) for Circle Detection. In: New Advancements in Swarm Algorithms: Operators and Applications. Intelligent Systems Reference Library, vol 160. Springer, Cham. https://doi.org/10.1007/978-3-030-16339-6_9

Download citation

Publish with us

Policies and ethics