Skip to main content

Experimental Laceration Spinal Cord Injury Model in Rodents

  • Chapter
  • First Online:
Animal Models of Acute Neurological Injury

Abstract

Experimental laceration spinal cord injury (l-SCI) is an important in vivo model to investigate mechanisms of axonal regeneration and neurite plasticity following SCI. l-SCI is customarily performed freehand under visual guidance that results in variable lesion depths and shapes. In this chapter, a precise l- SCI model will be described for rodents using the Louisville Injury System Apparatus (LISA). This method incorporates: (1) reliable vertebral stabilization and spinal cord exposure and (2) accurate tissue laceration without contusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunge RP, Puckett WR, Becerra JL, Marcillo A, Quencer RM. Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol. 1993;59:75–89.

    CAS  PubMed  Google Scholar 

  2. Quencer RM, Bunge RP. The injured spinal cord: imaging, histopathologic clinical correlates, and basic science approaches to enhancing neural function after spinal cord injury. Spine (Phila Pa 1976). 1996;21:2064–6.

    Article  CAS  Google Scholar 

  3. Hill RL, Zhang YP, Burke DA, Devries WH, Zhang Y, Magnuson DS, Whittemore SR, Shields CB. Anatomical and functional outcomes following a precise, graded, dorsal laceration spinal cord injury in C57BL/6 mice. J Neurotrauma. 2009;26:1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sherry BA, Alava G, Tracey KJ, Martiney J, Cerami A, Slater AF. Malaria-specific metabolite hemozoin mediates the release of several potent endogenous pyrogens (TNF, MIP-1 alpha, and MIP-1 beta) in vitro, and altered thermoregulation in vivo. J Inflamm. 1995;45:85–96.

    CAS  PubMed  Google Scholar 

  5. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416:636–40.

    Article  CAS  PubMed  Google Scholar 

  6. Silver J, Schwab ME, Popovich PG. Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol. 2015;7:a020602.

    Article  PubMed Central  Google Scholar 

  7. Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature. 2000;403:434–9.

    Article  CAS  PubMed  Google Scholar 

  8. Fournier AE, Gould GC, Liu BP, Strittmatter SM. Truncated soluble Nogo receptor binds Nogo-66 and blocks inhibition of axon growth by myelin. J Neurosci. 2002;22:8876–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim JE, Liu BP, Park JH, Strittmatter SM. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron. 2004;44:439–51.

    Article  CAS  PubMed  Google Scholar 

  10. Pasterkamp RJ, Verhaagen J. Emerging roles for semaphorins in neural regeneration. Brain Res Brain Res Rev. 2001;35:36–54.

    Article  CAS  PubMed  Google Scholar 

  11. Figueroa JD, Benton RL, Velazquez I, Torrado AI, Ortiz CM, Hernandez CM, Diaz JJ, Magnuson DS, Whittemore SR, Miranda JD. Inhibition of EphA7 up-regulation after spinal cord injury reduces apoptosis and promotes locomotor recovery. J Neurosci Res. 2006;84:1438–51.

    Article  CAS  PubMed  Google Scholar 

  12. Kempf A, Montani L, Petrinovic MM, Schroeter A, Weinmann O, Patrignani A, Schwab ME. Upregulation of axon guidance molecules in the adult central nervous system of Nogo-A knockout mice restricts neuronal growth and regeneration. Eur J Neurosci. 2013;38:3567–79.

    Article  PubMed  Google Scholar 

  13. Ramer MS, Harper GP, Bradbury EJ. Progress in spinal cord research—a refined strategy for the International Spinal Research Trust. Spinal Cord. 2000;38:449–72.

    Article  CAS  PubMed  Google Scholar 

  14. Inman D, Guth L, Steward O. Genetic influences on secondary degeneration and wound healing following spinal cord injury in various strains of mice. J Comp Neurol. 2002;451:225–35.

    Article  PubMed  Google Scholar 

  15. Steward O, Schauwecker PE, Guth L, Zhang Z, Fujiki M, Inman D, Wrathall J, Kempermann G, Gage FH, Saatman KE, Raghupathi R, McIntosh T. Genetic approaches to neurotrauma research: opportunities and potential pitfalls of murine models. Exp Neurol. 1999;157:19–42.

    Article  CAS  PubMed  Google Scholar 

  16. Kim JE, Li S, GrandPre T, Qiu D, Strittmatter SM. Axon regeneration in young adult mice lacking Nogo-A/B. Neuron. 2003;38:187–99.

    Article  CAS  PubMed  Google Scholar 

  17. Simonen M, Pedersen V, Weinmann O, Schnell L, Buss A, Ledermann B, Christ F, Sansig G, van der Putten H, Schwab ME. Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron. 2003;38:201–11.

    Article  CAS  PubMed  Google Scholar 

  18. Zheng B, Ho C, Li S, Keirstead H, Steward O, Tessier-Lavigne M. Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron. 2003;38:213–24.

    Article  CAS  PubMed  Google Scholar 

  19. Frisen J, Fried K, Sjogren AM, Risling M. Growth of ascending spinal axons in CNS scar tissue. Int J Dev Neurosci. 1993;11:461–75.

    Article  CAS  PubMed  Google Scholar 

  20. Hermanns S, Reiprich P, Muller HW. A reliable method to reduce collagen scar formation in the lesioned rat spinal cord. J Neurosci Methods. 2001;110:141–6.

    Article  CAS  PubMed  Google Scholar 

  21. Seitz A, Aglow E, Heber-Katz E. Recovery from spinal cord injury: a new transection model in the C57Bl/6 mouse. J Neurosci Res. 2002;67:337–45.

    Article  CAS  PubMed  Google Scholar 

  22. Iannotti C, Zhang YP, Shields LBE, Han Y, Burke DA, Xu XM, Shields CB. Dural repair reduces connective tissue scar invasion and cystic cavity formation after acute spinal cord laceration injury in adult rats. J Neurotrauma. 2006;23:853–65.

    Article  PubMed  Google Scholar 

  23. Zhang YP, Iannotti C, Shields LBE, Han Y, Burke DA, Xu XM, Shields CB. Dural closure, cord approximation, and clot removal: enhancement of tissue sparing in a novel laceration spinal cord injury model. J Neurosurg. 2004;100:343–52.

    Google Scholar 

  24. Onifer SM, Zhang YP, Burke DA, Brooks DL, Decker JA, McClure NJ, Floyd AR, Hall J, Proffitt BL, Shields CB, Magnuson DS. Adult rat forelimb dysfunction after dorsal cervical spinal cord injury. Exp Neurol. 2005;192:25–38.

    Article  PubMed  Google Scholar 

  25. Zhang YP, Walker MJ, Shields LBE, Wang X, Walker CL, Xu XM, Shields CB. Controlled cervical laceration injury in mice. J Vis Exp. 2013:50030.

    Google Scholar 

  26. Yu P, Zhang YP, Shields LBE, Zheng Y, Hu X, Hill R, Howard R, Gu Z, Burke DA, Whittemore SR, Xu XM, Shields CB. Inhibitor of DNA binding 2 promotes sensory axonal growth after SCI. Exp Neurol. 2011;231:38–44.

    Article  CAS  PubMed  Google Scholar 

  27. Sivasankaran R, Pei J, Wang KC, Zhang YP, Shields CB, Xu XM, He Z. PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat Neurosci. 2004;7:261–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We acknowledge Norton Healthcare for their continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa B. E. Shields .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y.P., Shields, L.B.E., Shields, C.B. (2019). Experimental Laceration Spinal Cord Injury Model in Rodents. In: Chen, J., Xu, Z., Xu, X., Zhang, J. (eds) Animal Models of Acute Neurological Injury. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-030-16082-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16082-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16080-7

  • Online ISBN: 978-3-030-16082-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics