Skip to main content

Decomposition of Solutions of the Wave Equation into Poincaré Wavelets

  • Chapter
  • First Online:

Abstract

An integral representation of solutions of the wave equation in terms of elementary solutions with known properties is constructed. This representation is found by affine Poincaré continuous wavelet analysis. The efficiency of the formulas derived in this way for an applied problem is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kaiser, G.: A Friendly Guide to Wavelets, Birkhäuser (1994).

    Google Scholar 

  2. Antoine, J.-P., Murenzi, R., Vandergheynst, P., and Ali, S. T.: Two-Dimensional Wavelets and their Relatives, Cambridge University Press (1994).

    Google Scholar 

  3. Babich, V. M., and Ulin, V. V.: The complex space-time ray method and “quasi-photons”. (Russian). In Mathematical questions in the theory of wave propagation. 12 Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 117, 5–12 (1981). Transl. J. Soviet Math., 24, 269–274 (1984).

    Google Scholar 

  4. Kachalov, A. P.: A coordinate system for describing the “quasiphoton”. In Mathematical questions in the theory of wave propagation. 14 Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 140, 73–76 (1984). Transl. J. Soviet Math., 32, 151–153 (1986).

    Google Scholar 

  5. Popov, M. M.: A new method for calculating wave fields in high-frequency approximation. (Russian). In Mat. Vopr. Teor. Rasprostr. Voln.. 36 Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 342, 5–13 (2007). Transl. J. Math. Sci., N.Y. 148, 633–638 (2008).

    Google Scholar 

  6. Shlivinski, A., Heyman, E., Boag, A., and Letrou, C.: A phase-space beam summation formulation for ultrawide-band radiation. IEEE Transactions on Antennas and Propagation, 52, 2042–2056 (2004).

    Article  Google Scholar 

  7. Popov, M. M., Semtchenok, N. M., Popov, P. M., and Verdel, A. R.: Depth migration by the Gaussian beam summation method. Geophysics, 75, S81–S93 (2010).

    Article  Google Scholar 

  8. Leibovich, M., and Heyman, E.: Beam Summation Theory for Waves in Fluctuating Media. Part I: The Beam Frame and the Beam-Domain Scattering Matrix. IEEE Transactions on Antennas and Propagation, 65, 5431–5442 (2017).

    Article  MathSciNet  Google Scholar 

  9. Babich, V. M.: Quasiphotons and the space-time ray method. (Russian) In Mathematical questions in the theory of wave propagation. 36 Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov., 342, 5–13 (2007). Transl. J. Math. Sci. (N.Y.), 148, 633–638 (2008).

    Google Scholar 

  10. Kiselev, A.P., and Perel, M. V.: Gaussian wave packets. Optics and Spectroscopy, 86, pp. 307–309 (1999).

    Google Scholar 

  11. Kiselev, A.P., and Perel, M. V.: Highly localized solutions of the wave equation. J. Math. Phys., 41, pp. 1034–1955 (2000).

    Article  MathSciNet  Google Scholar 

  12. Perel, M. V., and Sidorenko, M. S.: Wavelet analysis in solving the Cauchy problem for the wave equation in three-dimensional space. In Mathematical and Numerical Aspects of Wave Propagation: Waves 2003, G. C. Cohen (ed), Springer, Berlin (2003) pp.794–798.

    Chapter  Google Scholar 

  13. Perel, M. V., and Sidorenko, M. S.: Wavelet analysis for the solutions of the wave equation. In Proceedings of the International Conference Days on Diffraction, Saint-Petersburg (2006), pp. 208–217.

    Google Scholar 

  14. Perel, M. V., and Sidorenko, M. S.: New physical wavelet ‘Gaussian wave packet’. J. of Phys. A: Math. and Theor., 40, 3441 (2007).

    Article  MathSciNet  Google Scholar 

  15. Perel, M. V., and Sidorenko, M. S.: Wavelet-based integral representation for solutions of the wave equation. J. of Phys. A: Math. and Theor., 42, 375211 (2009).

    Article  MathSciNet  Google Scholar 

  16. Perel, M. V.: Integral representation of solutions of the wave equation based on Poincaré wavelets. In Proceedings of the International Conference Days on Diffraction, Saint-Petersburg (2009), pp. 159–161.

    Google Scholar 

  17. Gorodnitskiy, E. A., and Perel, M. V.: The Poincaré wavelet transform: implementation and interpretation. In Proceedings of the International Conference Days on Diffraction, Saint-Petersburg (2011), pp. 72–77.

    Google Scholar 

  18. Perel, M., Sidorenko, M., and Gorodnitskiy, E.: Multiscale Investigation of Solutions of the Wave Equation. In Integral Methods in Science and Engineering, C. Constanda and M. E. Perez (eds.), Birkhäuser, Boston (2011), pp. 291–300.

    Google Scholar 

  19. Perel, M., and Gorodnitskiy, E.: Integral representations of solutions of the wave equation based on relativistic wavelets. J. of Phys. A: Math. and Theor., 45, 385203 (2012).

    Article  MathSciNet  Google Scholar 

  20. Gorodnitskiy, E., Perel, M. V., Geng, Yu, and Wu, R.-S.: Depth migration with Gaussian wave packets based on Poincaré wavelets. Geophys. J. Int., 205, pp. 314–331 (2016).

    Article  Google Scholar 

  21. Gorodnitskiy, E. A., Perel, M. V.: Justification of a Wavelet-Based Integral Formula for Solutions of the Wave Equation. (Russian) In Mathematical questions in the theory of wave propagation. Part 47 Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 461, 107–123 (2017). Transl. J. Math. Sci. (N.Y.), 238, pp. 630–640 (2019).

    Google Scholar 

  22. Versteeg, R.: The Marmousi experience: Velocity model determination on a synthetic complex data set. The Leading Edge, 13, 927–936 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria V. Perel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perel, M.V., Gorodnitskiy, E.A. (2019). Decomposition of Solutions of the Wave Equation into Poincaré Wavelets. In: Constanda, C., Harris, P. (eds) Integral Methods in Science and Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-16077-7_27

Download citation

Publish with us

Policies and ethics