Skip to main content

Fabrication of Dental Restorations Using Digital Technologies: Techniques and Materials

  • Chapter
  • First Online:
Digital Restorative Dentistry

Abstract

Digital technology such as computer-aided design/computer-aided manufacture (CAD/CAM) is rapidly expanding and transforming dentistry at an unprecedented pace. CAD/CAM technology in dentistry can be classified as either “subtractive” or “additive” manufacturing methods. Subtractive manufacturing method includes machining and milling (CAM) and laser ablation technologies, while additive manufacturing method includes 3D printing and laser melting technologies. Different materials (polymers, metals, and ceramics) and equipment are commercially available for various dental applications such as custom trays, surgical guides, temporary or definite fixed or removable dental prostheses, and orthodontic or maxillofacial appliances. This chapter reviews the main systems including production processes, dental applications, available materials and equipment, and advantages and limitations of the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidowitz G, Kotick PG. The use of CAD/CAM in dentistry. Dent Clin N Am. 2011;55(3):559–70.

    Article  PubMed  Google Scholar 

  2. Miyazaki T, Hotta Y. CAD/CAM systems available for the fabrication of crown and bridge restorations. Aust Dent J. 2011;56(s1):97–106.

    Article  PubMed  Google Scholar 

  3. Van Noort R. The future of dental devices is digital. Dent Mater. 2012;28(1):3–12.

    Article  PubMed  Google Scholar 

  4. Patel N. Contemporary dental CAD/CAM: modern chairside/lab applications and the future of computerized dentistry. Compend Contin Educ Dent. 2014;35(10):739–46.

    PubMed  Google Scholar 

  5. Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc. 2006;137(9):1289–96.

    Article  PubMed  Google Scholar 

  6. Global Market Insights, Inc Healthcare 3D printing market worth over $2.2 billion by 2024. 2017.

    Google Scholar 

  7. Persistence Market Research. Additive manufacturing market to develop rapidly by 2016–2026. 2017.

    Google Scholar 

  8. Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. 2014;98(2):159–61.

    Article  PubMed  Google Scholar 

  9. Barazanchi A, et al. Additive technology: update on current materials and applications in dentistry. J Prosthodont. 2017;26(2):156–63.

    Article  PubMed  Google Scholar 

  10. Ventola CL. Medical applications for 3D printing: current and projected uses. Pharm Ther. 2014;39(10):704.

    Google Scholar 

  11. Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J. 2008;204(9):505.

    Article  PubMed  Google Scholar 

  12. Braian M, et al. Geometrical accuracy of metallic objects produced with additive or subtractive manufacturing: a comparative in vitro study. Dent Mater. 2018;34(7):978–93.

    Article  PubMed  Google Scholar 

  13. Alghazzawi TF. Advancements in CAD/CAM technology: options for practical implementation. J Prosthodont Res. 2016;60(2):72–84.

    Article  PubMed  Google Scholar 

  14. Abduo J, Lyons K, Bennamoun M. Trends in computer-aided manufacturing in prosthodontics: a review of the available streams. Int J Dent. 2014;2014:783948.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Beuer F, et al. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J. 2008;204(9):505–11.

    Article  PubMed  Google Scholar 

  16. Tapie L, et al. Understanding dental CAD/CAM for restorations—the digital workflow from a mechanical engineering viewpoint. Int J Comput Dent. 2015;18(1):21–44.

    PubMed  Google Scholar 

  17. Baroudi K, Ibraheem SN. Assessment of chair-side computer-aided design and computer-aided manufacturing restorations: a review of the literature. J Int Oral Health. 2015;7(4):96–104.

    PubMed  PubMed Central  Google Scholar 

  18. Brochu M. Focalisation sur les scanneurs dentaires numériques: la science a l'appui. J Can Dent Res de Prosthodont. 2009;2009:45–8.

    Google Scholar 

  19. Giordano R. Materials for chairside CAD/CAM-produced restorations. J Am Dent Assoc. 2006;137:14S–21S.

    Article  PubMed  Google Scholar 

  20. Christensen GJ. Is now the time to purchase an in-office CAD/CAM device? J Am Dent Assoc. 2006;137(2):235–8.

    Article  PubMed  Google Scholar 

  21. Cheng LKL, Kooistra CS. Current chairside CAD/CAM systems and materials for dental restorations. Clin Update. 2014;36:4.

    Google Scholar 

  22. Miyazaki T, et al. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J. 2009;28(1):44–56.

    Article  PubMed  Google Scholar 

  23. Fasbinder DJ, et al. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns. J Am Dent Assoc. 2010;141:10S–4S.

    Article  PubMed  Google Scholar 

  24. Fasbinder DJ. Chairside CAD/CAM: an overview of restorative material options. Compend Contin Educ Dent (Jamesburg, NJ: 1995). 2012;33(1):50–8.

    Google Scholar 

  25. Fasbinder DJ, Neiva GF. Surface evaluation of polishing techniques for new resilient CAD/CAM restorative materials. J Esthet Restor Dent. 2016;28(1):56–66.

    Article  PubMed  Google Scholar 

  26. Lambert H, Durand JC, Jacquot B, Fages M. Dental biomaterials for chairside CAD/CAM: State of the art. J Adv Prosthodont. 2017;9(6):486–95.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Skramstad M, Fasbinder D. Full-contour zirconia fixed partial dentures as chairside applications: a case report. Compend Contin Educ Dent (Jamesburg, NJ: 1995). 2016;37(9):648–54.

    Google Scholar 

  28. Blatz MB, Conejo J. The current state of chairside digital dentistry and materials. Dent Clin North Am. 2019;63(2):175–97.

    Article  PubMed  Google Scholar 

  29. Sannino G, et al. CEREC CAD/CAM chairside system. Oral Implantol (Rome). 2014;7(3):57–70.

    Google Scholar 

  30. Andreev A, Kosenko M, Petrovskiy V. The use of laser milling for prototyping of dental structures. Bull Lebedev Phys Inst. 2015;42(9):255–9.

    Article  Google Scholar 

  31. Joda T, et al. Digital technology in fixed implant prosthodontics. Periodontology. 2017;73(1):178–92.

    Article  Google Scholar 

  32. Laser ablation system for dental restorations. Accessed 1 May 2018. http://www.dentalwings.com/products/laser-milling-system/

  33. Rynerson M. Introduction of our revolutionary laser milling technology. 2015. http://www.dentalwings.com/news/introduction-of-our-revolutionary-laser-milling-technology/. Accessed 2 Feb 2018.

    Google Scholar 

  34. Dawood A, et al. 3D printing in dentistry. Br Dent J. 2015;219(11):521.

    Article  PubMed  Google Scholar 

  35. Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater. 2016;32(1):54–64.

    Article  PubMed  Google Scholar 

  36. Azari A, Nikzad S. The evolution of rapid prototyping in dentistry: a review. Rapid Prototyp J. 2009;15(3):216–25.

    Article  Google Scholar 

  37. Totu EE, et al. Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolithographic complete denture manufacturing - the future in dental care for elderly edentulous patients? J Dent. 2017;59:68–77.

    Article  PubMed  Google Scholar 

  38. Liu Q, Leu MC, Schmitt SM. Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol. 2006;29(3–4):317–35.

    Article  Google Scholar 

  39. Touri M, Kabirian F, Saadati M, Ramakrishna S, Mozafari M. Additive manufacturing of biomaterials− the evolution of rapid prototyping. Adv Eng Mater. 2019;21(2):1800511.

    Article  Google Scholar 

  40. Osman RB, Alharbi N, Wismeijer D. Build angle: does it influence the accuracy of 3D-printed dental restorations using digital light-processing technology? Int J Prosthodont. 2017;30(2):182–8.

    Article  PubMed  Google Scholar 

  41. Revilla-León M, Özcan M. Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont. 2019;28(2):146–58.

    Article  PubMed  Google Scholar 

  42. Li SY, et al. Biological evaluation of three-dimensional printed co-poly lactic acid/glycolic acid/tri-calcium phosphate scaffold for bone reconstruction. Zhonghua Kou Qiang Yi Xue Za Zhi. 2016;51(11):661–6.

    PubMed  Google Scholar 

  43. Dehurtevent M, et al. Stereolithography: a new method for processing dental ceramics by additive computer-aided manufacturing. Dent Mater. 2017;33(5):477–85.

    Article  PubMed  Google Scholar 

  44. Abbasi AJ, et al. Mandibular rami implant: a new approach in mandibular reconstruction. J Oral Maxillofac Surg. 2017;75(12):2550–8.

    Article  PubMed  Google Scholar 

  45. Ahn SY, et al. Computer-aided design/computer-aided manufacturing-guided endodontic surgery: guided osteotomy and apex localization in a mandibular molar with a thick buccal bone plate. J Endod. 2018;44(4):665–70.

    Article  PubMed  Google Scholar 

  46. Wang L, et al. Clinical application of individualized three-dimensional printing implant template in multi-tooth dental implantation. Shanghai Kou Qiang Yi Xue. 2017;26(4):453–7.

    PubMed  Google Scholar 

  47. Rathi N, Scherer MD, McGlumphy E. Stabilization of a computer-aided implant surgical guide using existing dental implants with conversion of an overdenture to a fixed prosthesis. J Prosthodont. 2014;23(8):634–8.

    Article  PubMed  Google Scholar 

  48. Lee WS, Lee DH, Lee KB. Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system. J Adv Prosthodont. 2017;9(4):265–70.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lin WS, Harris BT, Morton D. Use of CBCT imaging, open-source modeling software, and desktop stereolithography 3D printing to duplicate a removable dental prosthesis—a proof of concept. Compend Contin Educ Dent. 2017;38(8):e5–8.

    PubMed  Google Scholar 

  50. Reyes A, Turkyilmaz I, Prihoda TJ. Accuracy of surgical guides made from conventional and a combination of digital scanning and rapid prototyping techniques. J Prosthet Dent. 2015;113(4):295–303.

    Article  PubMed  Google Scholar 

  51. Sun YC, et al. Progress in research and application of the edentulous custom trays. Zhonghua Kou Qiang Yi Xue Za Zhi. 2016;51(11):698–701.

    PubMed  Google Scholar 

  52. Ishida Y, Miyasaka T. Dimensional accuracy of dental casting patterns created by 3D printers. Dent Mater J. 2016;35(2):250–6.

    Article  PubMed  Google Scholar 

  53. Alharbi N, Osman R, Wismeijer D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent. 2016;115(6):760–7.

    Article  PubMed  Google Scholar 

  54. Johnson AW. Dental occlusion ties: a rapid, safe, and non-invasive maxillo-mandibular fixation technology. Laryngosc Investig Otolaryngol. 2017;2(4):178–83.

    Article  Google Scholar 

  55. Martorelli M, et al. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent Mater. 2013;29(2):e1–e10.

    Article  PubMed  Google Scholar 

  56. Batstone MD. Reconstruction of major defects of the jaws. Aust Dent J. 2018;63(Suppl 1):S108–s113.

    Article  PubMed  Google Scholar 

  57. Unkovskiy A, et al. Direct 3D printing of silicone facial prostheses: a preliminary experience in digital workflow. J Prosthet Dent. 2018;120(2):303–8.

    Article  PubMed  Google Scholar 

  58. Shaheen E, et al. Three-dimensional printed final occlusal splint for orthognathic surgery: design and validation. Int J Oral Maxillofac Surg. 2017;46(1):67–71.

    Article  PubMed  Google Scholar 

  59. Tamimi F, et al. Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site. Biomaterials. 2014;35(21):5436–45.

    Article  PubMed  Google Scholar 

  60. Koutsoukis T, et al. Selective laser melting technique of Co-Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques. J Prosthodont. 2015;24(4):303–12.

    Article  PubMed  Google Scholar 

  61. Akova T, et al. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent Mater. 2008;24(10):1400–4.

    Article  PubMed  Google Scholar 

  62. Venkatesh KV, Nandini VV. Direct metal laser sintering: a digitised metal casting technology. J Ind Prosthodont Soc. 2013;13(4):389–92.

    Article  Google Scholar 

  63. Deng KH, et al. Quantitative evaluation of printing accuracy and tissue surface adaptation of mandibular complete denture polylactic acid pattern fabricated by fused deposition modeling technology. Zhonghua Kou Qiang Yi Xue Za Zhi. 2017;52(6):342–5.

    PubMed  Google Scholar 

  64. Revilla Leon M, et al. 3D metal printing – additive manufacturing technologies for frameworks of implant-borne fixed dental prosthesis. Eur J Prosthodont Restor Dent. 2017;25(3):143–7.

    PubMed  Google Scholar 

  65. Rengier F, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–41.

    Article  PubMed  Google Scholar 

  66. Weller C, Kleer R, Piller FT. Economic implications of 3D printing: market structure models in light of additive manufacturing revisited. Int J Prod Econ. 2015;164(Suppl C):43–56.

    Article  Google Scholar 

  67. Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61(5):315–60.

    Article  Google Scholar 

  68. Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput. 2013;51(3):245–56.

    Article  PubMed  Google Scholar 

  69. Wang X, et al. Direct selective laser sintering of hard metal powders: experimental study and simulation. Int J Adv Manuf Technol. 2002;19(5):351–7.

    Article  Google Scholar 

  70. Shellabear M, Nyrhilä O. DMLS-development history and state of the art. Laser assisted netshape engineering 4, Proceedings of the 4th LANE; 2004. p. 21–24.

    Google Scholar 

  71. Hollander DA, et al. Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials. 2006;27(7):955–63.

    Article  PubMed  Google Scholar 

  72. Oyar P. Laser sintering technology and balling phenomenon. Photomed Laser Surg. 2018;36(2):72–7.

    Article  PubMed  Google Scholar 

  73. Tan XP, Tan YJ, Chow CS, Tor SB, Yeong WY. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C. 2017;76:1328–43.

    Article  Google Scholar 

  74. Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing SL. Review of selective laser melting: materials and applications. Appl Phys Rev. 2015;2(4):041101.

    Article  Google Scholar 

  75. Alageel O, et al. Removable partial denture alloys processed by laser-sintering technique. J Biomed Mater Res B Appl Biomater. 2017;

    Google Scholar 

  76. Liu YF, et al. A preliminary study on the forming quality of titanium alloy removable partial denture frameworks fabricated by selective laser melting. Zhonghua Kou Qiang Yi Xue Za Zhi. 2017;52(6):351–4.

    PubMed  Google Scholar 

  77. Ohkubo C, et al. Titanium removable denture based on a one-metal rehabilitation concept. Dent Mater J. 2017;36(5):517–23.

    Article  PubMed  Google Scholar 

  78. Almufleh B, et al. Patient satisfaction with laser-sintered removable partial dentures: a crossover pilot clinical trial. J Prosthet Dent. 2018;119:560–7.

    Article  PubMed  Google Scholar 

  79. Lima JMC, et al. Removable partial dentures: use of rapid prototyping. J Prosthodont. 2014;23(7):588–91.

    Article  PubMed  Google Scholar 

  80. Ye Y, et al. Adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by selective laser melting technique. Lasers Med Sci. 2018;33(5):1025–30.

    Article  PubMed  Google Scholar 

  81. Kanazawa M, et al. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting. J Prosthet Dent. 2014;112(6):1441–7.

    Article  PubMed  Google Scholar 

  82. Kim M-J, et al. Marginal accuracy and internal fit of 3-D printing laser-sintered Co-Cr alloy copings. Materials. 2017;10(1):93.

    Article  PubMed Central  Google Scholar 

  83. Hama Suleiman S, Vult von Steyern P. Fracture strength of porcelain fused to metal crowns made of cast, milled or laser-sintered cobalt-chromium. Acta Odontol Scand. 2013;71(5):1280–9.

    Article  Google Scholar 

  84. Dzhendov D, Dikova T. Application of selective laser melting in manufacturing of fixed dental prostheses. J IMAB. 2016;22(4):1414–7.

    Article  Google Scholar 

  85. Kul E, Aladag LI, Duymus ZY. Comparison of the metal-ceramic bond after recasting and after laser sintering. J Prosthet Dent. 2015;114(1):109–13.

    Article  PubMed  Google Scholar 

  86. V H, et al. Evaluation of internal and marginal fit of two metal ceramic system – in vitro study. J Clin Diagn Res. 2014;8(12):Zc53–6.

    PubMed  PubMed Central  Google Scholar 

  87. Sundar MK, Chikmagalur SB, Pasha F. Marginal fit and microleakage of cast and metal laser sintered copings—an in vitro study. J Prosthodont Res. 2014;58(4):252–8.

    Article  PubMed  Google Scholar 

  88. Tamac E, Toksavul S, Toman M. Clinical marginal and internal adaptation of CAD/CAM milling, laser sintering, and cast metal ceramic crowns. J Prosthet Dent. 2014;112(4):909–13.

    Article  PubMed  Google Scholar 

  89. Iseri U, Ozkurt Z, Kazazoglu E. Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dent Mater J. 2011;30(3):274–80.

    Article  PubMed  Google Scholar 

  90. Prabhu R, et al. Clinical acceptability of metal-ceramic fixed partial dental prosthesis fabricated with direct metal laser sintering technique-5 year follow-up. J Ind Prosthodont Soc. 2016;16(2):193–7.

    Article  Google Scholar 

  91. Abou Tara M, et al. Clinical outcome of metal-ceramic crowns fabricated with laser-sintering technology. Int J Prosthodont. 2011;24(1):46–8.

    PubMed  Google Scholar 

  92. Bilgin MS, et al. Comparison of fracture resistance between cast, CAD/CAM milling, and direct metal laser sintering metal post systems. J Prosthodont Res. 2016;60(1):23–8.

    Article  PubMed  Google Scholar 

  93. Chen J, et al. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J Prosthet Dent. 2014;112(5):1088–1095.e1.

    Article  PubMed  Google Scholar 

  94. Mangano F, et al. Direct metal laser sintering titanium dental implants: a review of the current literature. Int J Biomater. 2014;2014:461534.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Traini T, et al. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater. 2008;24(11):1525–33.

    Article  PubMed  Google Scholar 

  96. Leuders S, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue. 2013;48:300–7.

    Article  Google Scholar 

  97. Tan N, et al. The influence of direct laser metal sintering implants on the early stages of osseointegration in diabetic mini-pigs. Int J Nanomedicine. 2017;12:5433–42.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mangano F, et al. Histological evidence of the osseointegration of fractured direct metal laser sintering implants retrieved after 5 years of function. Biomed Res Int. 2017;2017:9732136.

    PubMed  PubMed Central  Google Scholar 

  99. Garcia-Gareta E, et al. Biomimetic surface functionalization of clinically relevant metals used as orthopaedic and dental implants. Biomed Mater. 2017;13(1):015008.

    Article  PubMed  Google Scholar 

  100. Mumith A, et al. Augmenting the osseointegration of endoprostheses using laser-sintered porous collars: an in vivo study. Bone Joint J. 2017;99-b(2):276–82.

    Article  PubMed  Google Scholar 

  101. Sumida T, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh. J Cranio-Maxillofac Surg. 2015;43(10):2183–8.

    Article  Google Scholar 

  102. Gahler A, Heinrich JG, Guenster J. Direct laser sintering of Al2O3–SiO2 dental ceramic components by layer-wise slurry deposition. J Am Ceram Soc. 2006;89(10):3076–80.

    Article  Google Scholar 

  103. Vandenbroucke B, Kruth J-P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2007;13(4):196–203.

    Article  Google Scholar 

  104. Puskar T, et al. A comparative analysis of the corrosive effect of artificial saliva of variable pH on DMLS and cast Co-Cr-Mo dental alloy. Materials. 2014;7(9):6486–501.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Mengucci P, et al. Effects of build orientation and element partitioning on microstructure and mechanical properties of biomedical Ti-6Al-4V alloy produced by laser sintering. J Mech Behav Biomed Mater. 2017;71:1–9.

    Article  PubMed  Google Scholar 

  106. Sun S-H, et al. Build direction dependence of microstructure and high-temperature tensile property of Co–Cr–Mo alloy fabricated by electron beam melting. Acta Mater. 2014;64:154–68.

    Article  Google Scholar 

  107. Takaichi A, et al. Microstructures and mechanical properties of Co–29Cr–6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater. 2013;21:67–76.

    Article  PubMed  Google Scholar 

  108. Benedetti M, et al. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. J Mech Behav Biomed Mater. 2017;71:295–306.

    Article  PubMed  Google Scholar 

  109. Alifui-Segbaya F, et al. Clinical relevance of laser-sintered Co-Cr alloys for prosthodontic treatments: a review. 2014.

    Book  Google Scholar 

  110. Xin XZ, et al. In vitro biocompatibility of Co–Cr alloy fabricated by selective laser melting or traditional casting techniques. Mater Lett. 2012;88(0):101–3.

    Article  Google Scholar 

  111. Xin X, et al. Surface characteristics and corrosion properties of selective laser melted Co–Cr dental alloy after porcelain firing. Dent Mater. 2014;30(3):263–70.

    Article  PubMed  Google Scholar 

  112. Kruth J-P, et al. Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. 2005.

    Google Scholar 

  113. Laser sintering high-quality dental components. 2011. https://www.industrial-lasers.com/articles/2011/03/laser-sintering-high-quality.html. Accessed 3 Nov 2018.

  114. Griffiths L. 3D printing in dentistry: “Laser melting is the future”. TCT accelerating 3D technology. 2015.

    Google Scholar 

  115. Bacchewar P, Singhal S, Pandey P. Statistical modelling and optimization of surface roughness in the selective laser sintering process. Proc Inst Mech Eng B J Eng Manuf. 2007;221(1):35–52.

    Article  Google Scholar 

  116. Nakata T, Shimpo H, Ohkubo C. Clasp fabrication using one-process molding by repeated laser sintering and high-speed milling. J Prosthodont Res. 2017;61(3):276–82.

    Article  PubMed  Google Scholar 

  117. GE to buy SLM, Arcam for $1.4 billion in 3D printing push. 2016. https://www.cnbc.com. Accessed 2018.

  118. Hill R. 3D systems to acquire phenix systems. 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faleh Tamimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alageel, O., Wazirian, B., Almufleh, B., Tamimi, F. (2019). Fabrication of Dental Restorations Using Digital Technologies: Techniques and Materials. In: Tamimi, F., Hirayama, H. (eds) Digital Restorative Dentistry . Springer, Cham. https://doi.org/10.1007/978-3-030-15974-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15974-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15973-3

  • Online ISBN: 978-3-030-15974-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics