Skip to main content

Concept of Sensor for Mining Machines Powered by Pressure Changes

  • Conference paper
  • First Online:
  • 697 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 934))

Abstract

In mining plants there are the machines and technological lines, in which use of additional sensors e.g. temperature or pressure ones, is recommended, but due to high temperature in workings it is difficult. Regulations resulting from the ATEX Directive limit a possibility of modernization of the existing systems for control of machines and use of additional measuring sensors with wires. A concept of electricity generator, designed to power the wireless sensors, which uses the pressure changes in a hydraulic system of machines, is presented. Presented generator is planned to be used in wireless temperature or pressure sensors intended to be used in mobile mining machines equipped with hydraulic systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), 175–195 (2006)

    Article  Google Scholar 

  2. Brunelli, D., Passerone, R., Rizzon, L., Rossi, M., Sartori, D.: Self-powered WSN for distributed data center monitoring. Sensors 16(1), 57 (2016)

    Article  Google Scholar 

  3. Buchacz, A., Płaczek, M., Wróbel, A.: Control of characteristics of mechatronic systems using piezoelectric materials. J. Theoret. Appl. Mech. 51(1), 225–234 (2013)

    Google Scholar 

  4. Cunefare, K.A., Skow, E.A., Erturk, A., Savor, J., Verma, N., Cacan, M.R.: Energy harvesting from hydraulic pressure fluctuations. Smart Mater. Struct. 22, 025036 (2013). (10 pp)

    Article  Google Scholar 

  5. Catalogue card of Elgór-Hansen EH-PressCater system. www.elgorhansen.com

  6. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Hoboken (2011)

    Book  Google Scholar 

  7. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102 (2009)

    Article  Google Scholar 

  8. Gilbert, J.M., Balouchi, F.: Comparison of energy harvesting systems for wireless sensor networks. Int. J. Autom. Comput. 5(4), 334–347 (2008)

    Article  Google Scholar 

  9. Grzybek, D.: Piezoelectric generators: materials and structures. Pomiary Automatyka Robotyka, October 2013

    Google Scholar 

  10. Jasiulek, D.: The use of lost energy for supplying the dispersed network of sensors. Problemy Eksploatacji – Maint. Prob. 97(2), 51–59 (2015)

    Google Scholar 

  11. Jasiulek, D.: Testing the piezoelectric energy harvester’s deflection on the amount of generated energy. In: Awrejcewicz, J., Kaliński, K.J., Kaliczyńska, M., Szewczyk, R. (eds.) Mechatronics: Ideas, Challenges, Solutions and Applications, pp. 95–112 (2016)

    Google Scholar 

  12. Jasiulek, D.: Alternative power sources for sensors used in mining. Own work ITG KOMAG (not published)

    Google Scholar 

  13. Latalski, J.: Modelling of macro fibre composite piezoelectric active elements in ABAQUS system. Eksploatacja i Niezawodnosc – Maint. Reliab. 4, 72–78 (2011)

    Google Scholar 

  14. Radkowski, S., Lubikowski, K., Piątak, A.: Vibration energy harvesting in the transportation system: a review. Diagnostyka – Appl. Struct. Health Usage Cond. Monit. 4(64), 39–44 (2012)

    Google Scholar 

  15. Sadeghioon, A.M., Metje, N., Chapma, D.N., Anthony, C.J.: SmartPipes: smart wireless sensor networks for leak detection in water pipelines. J. Sens. Actuator Netw. 3(1), 64–78 (2014)

    Article  Google Scholar 

  16. Sardini, E., Serpelloni, M.: Passive and self-powered autonomous sensors for remote measurements. Sensors 9, 943–960 (2009)

    Article  Google Scholar 

  17. Sardini, E., Serpelloni, M.: Self-powered wireless sensor for air temperature and velocity measurements with energy harvesting capability. IEEE Trans. Instrum. Meas. 60(5), 1838–1844 (2011)

    Article  Google Scholar 

  18. Sazonov, E., Li, H., Curry, D., Pillay, P.: Self-powered sensors for monitoring of highway bridges. IEEE Sens. J. 9(11), 1422–1429 (2009)

    Article  Google Scholar 

  19. Shena, H., Qiu, J., Balsi, M.: Vibration damping as a result of piezoelectric energy harvesting. Sens. Actuators A 169, 178–186 (2011)

    Article  Google Scholar 

  20. Sodano, H.A., Inman, D.J.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36, 197–206 (2004)

    Article  Google Scholar 

  21. Stankiewicz, K.: The method of swarm self-organization in monitoring and control of equipment in underground mining. Maszyny Górnicze 4, 10–13 (2011)

    Google Scholar 

  22. Stankiewicz, K.: The concept of the simulation environment to evaluate the self-organization of routing in the sensor network. Maszyny Górnicze 2, 3–8 (2015)

    Google Scholar 

  23. Świder, J., Woszczyński, M.: Use of the system for energy recuperation and control in diesel machines. Mach. Dyn. Res. 38(1), 73–79 (2014)

    Google Scholar 

  24. Zolkiewski, S.: Vibrations of beams with a variable cross-section fixed on rotational rigid disks. Latin Am. J. Solids Struct. 10, 39–57 (2013)

    Article  Google Scholar 

  25. Zolkiewski, S.: Damped vibrations problem of beams fixed on the rotational disk. Int. J. Bifurcat. Chaos 21(10), 3033–3041 (2011)

    Article  Google Scholar 

  26. Chen, X., Yang, T., Wang, W., Yao, X.: Vibration energy harvesting with a clamped piezoelectric circular diaphragm. Ceram. Int. 38, S271–S274 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Jasiulek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jasiulek, D. (2019). Concept of Sensor for Mining Machines Powered by Pressure Changes. In: Świder, J., Kciuk, S., Trojnacki, M. (eds) Mechatronics 2017 - Ideas for Industrial Applications. MECHATRONICS 2017. Advances in Intelligent Systems and Computing, vol 934. Springer, Cham. https://doi.org/10.1007/978-3-030-15857-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15857-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15856-9

  • Online ISBN: 978-3-030-15857-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics