Skip to main content

Cross-Domain Recommendation via Deep Domain Adaptation

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11438))

Included in the following conference series:

Abstract

The behavior of users in certain services indicates their preferences, which may be used to make recommendations for other services they have never used. However, the cross-domain relation between items and user preferences is not simple, especially when there are few or no common users and items across domains. We propose a content-based cross-domain recommendation method for cold-start users that does not require user- or item-overlap. We formulate recommendations as an extreme classification task, and the problem is treated as an instance of unsupervised domain adaptation. We assess the performance of the approach in experiments on large datasets collected from Yahoo! JAPAN video and news services and find that it outperforms several baseline methods including a cross-domain collaborative filtering method.

This work was conducted during the first author’s internship at Yahoo! JAPAN.

TS was partially supported by MEXT Kakenhi (18H03201) and JST-CREST.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Superscript X denotes that the data is missing labels associated to their input vectors.

  2. 2.

    The unit size of each hidden layer is as follows: \(E_c = E_p^S = E_p^T = (256 - 128 - 128 - 64)\), \(D = (128 - 128 - 256)\), and \(G = (256 - 256 - 256 - 64)\). Left is the input.

  3. 3.

    We train a classifier that detects the domain of the input represented by the shared encoder and test the classification accuracy. This is due to the adversarial training.

References

  1. Abel, F., Araújo, S., Gao, Q., Houben, G.-J.: Analyzing cross-system user modeling on the social web. In: Auer, S., Díaz, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 28–43. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22233-7_3

    Chapter  Google Scholar 

  2. Abel, F., Herder, E., Houben, G.J., Henze, N., Krause, D.: Cross-system user modeling and personalization on the social web. User Model. User-Adap. Inter. 23(2), 169–209 (2013). https://doi.org/10.1007/s11257-012-9131-2

    Article  Google Scholar 

  3. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 343–351. Curran Associates, Inc. (2016). http://papers.nips.cc/paper/6254-domain-separation-networks.pdf

  4. Cantador, I., Fernández-Tobías, I., Berkovsky, S., Cremonesi, P.: Cross-domain recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 919–959. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_27

    Chapter  Google Scholar 

  5. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). CoRR abs/1511.07289 (2015). http://arxiv.org/abs/1511.07289

  6. Covington, P., Adams, J., Sargin, E.: Deep neural networks for YouTube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, RecSys 2016, pp. 191–198. ACM, New York (2016). https://doi.org/10.1145/2959100.2959190

  7. Cremonesi, P., Quadrana, M.: Cross-domain recommendations without overlapping data: myth or reality? In: Proceedings of the 8th ACM Conference on Recommender Systems, RecSys 2014, pp. 297–300. ACM, New York (2014). https://doi.org/10.1145/2645710.2645769

  8. Elkahky, A.M., Song, Y., He, X.: A multi-view deep learning approach for cross domain user modeling in recommendation systems. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015, pp. 278–288. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2015). https://doi.org/10.1145/2736277.2741667

  9. Fernández-Tobías, I., Cantador, I., Kaminskas, M., Ricci, F.: A generic semantic-based framework for cross-domain recommendation. In: Proceedings of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec 2011, pp. 25–32. ACM, New York (2011). https://doi.org/10.1145/2039320.2039324

  10. Ganin, Y., Lempitsky, V.S.: Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015, pp. 1180–1189 (2015). http://jmlr.org/proceedings/papers/v37/ganin15.html

  11. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1–35 (2016). http://jmlr.org/papers/v17/15-239.html

    MathSciNet  MATH  Google Scholar 

  12. Gao, S., Luo, H., Chen, D., Li, S., Gallinari, P., Guo, J.: Cross-domain recommendation via cluster-level latent factor model. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8189, pp. 161–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40991-2_11

    Chapter  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. CoRR abs/1502.01852 (2015). http://arxiv.org/abs/1502.01852

  14. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, pp. 173–182. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2017). https://doi.org/10.1145/3038912.3052569

  15. Hu, G., Zhang, Y., Yang, Q.: MTNet: a neural approach for cross-domain recommendation with unstructured text. In: KDD 2018 Deep Learning Day (2018). https://www.kdd.org/kdd2018/files/deep-learning-day/DLDay18_paper_5.pdf

  16. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 263–272. IEEE Computer Society, Washington (2008). https://doi.org/10.1109/ICDM.2008.22

  17. Iwata, T., Takeuchi, K.: Cross-domain recommendation without shared users or items by sharing latent vector distributions. In: Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS), AISTATS 2015, USA, pp. 379–387 (2015)

    Google Scholar 

  18. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002). https://doi.org/10.1145/582415.582418

    Article  Google Scholar 

  19. Kaminskas, M., Fernández-Tobías, I., Cantador, I., Ricci, F.: Ontology-based identification of music for places. In: Cantoni, L., Xiang, Z.P. (eds.) Information and Communication Technologies in Tourism 2013, pp. 436–447. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36309-2_37

    Chapter  Google Scholar 

  20. Kaminskas, M., Fernández-Tobías, I., Ricci, F., Cantador, I.: Knowledge-based identification of music suited for places of interest. Inf. Technol. Tourism 14(1), 73–95 (2014). https://doi.org/10.1007/s40558-014-0004-x

    Article  Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

  22. Li, B., Yang, Q., Xue, X.: Can movies and books collaborate? Cross-domain collaborative filtering for sparsity reduction. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009, pp. 2052–2057. Morgan Kaufmann Publishers Inc., San Francisco (2009)

    Google Scholar 

  23. Loizou, A.: How to recommend music to film buffs: enabling the provision of recommendations from multiple domains, May 2009. https://eprints.soton.ac.uk/66281/

  24. Loni, B., Shi, Y., Larson, M., Hanjalic, A.: Cross-domain collaborative filtering with factorization machines. In: de Rijke, M., et al. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 656–661. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06028-6_72

    Chapter  Google Scholar 

  25. Low, Y., Agarwal, D., Smola, A.J.: Multiple domain user personalization. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, pp. 123–131. ACM, New York (2011). https://doi.org/10.1145/2020408.2020434

  26. Man, T., Shen, H., Jin, X., Cheng, X.: Cross-domain recommendation: an embedding and mapping approach. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 2464–2470 (2017). https://doi.org/10.24963/ijcai.2017/343

  27. Nakatsuji, M., Fujiwara, Y., Tanaka, A., Uchiyama, T., Ishida, T.: Recommendations over domain specific user graphs. In: Proceedings of the 2010 Conference on ECAI 2010: 19th European Conference on Artificial Intelligence, pp. 607–612. IOS Press, Amsterdam (2010)

    Google Scholar 

  28. Oord, A.V.D., Dieleman, S., Schrauwen, B.: Deep content-based music recommendation. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS 2013, pp. 2643–2651. Curran Associates Inc., USA (2013)

    Google Scholar 

  29. Pan, W., Xiang, E.W., Liu, N.N., Yang, Q.: Transfer learning in collaborative filtering for sparsity reduction. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, pp. 230–235. AAAI Press (2010)

    Google Scholar 

  30. Partalas, I., et al.: LSHTC: a benchmark for large-scale text classification. CoRR abs/1503.08581 (2015). http://arxiv.org/abs/1503.08581

  31. Rubens, N., Elahi, M., Sugiyama, M., Kaplan, D.: Active learning in recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 809–846. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_24

    Chapter  Google Scholar 

  32. Sahebi, S., Brusilovsky, P.: Cross-domain collaborative recommendation in a cold-start context: the impact of user profile size on the quality of recommendation. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899, pp. 289–295. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38844-6_25

    Chapter  Google Scholar 

  33. Sener, O., Song, H.O., Saxena, A., Savarese, S.: Learning transferrable representations for unsupervised domain adaptation. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 2110–2118. Curran Associates, Inc. (2016). http://papers.nips.cc/paper/6360-learning-transferrable-representations-for-unsupervised-domain-adaptation.pdf

  34. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

    MathSciNet  MATH  Google Scholar 

  35. Sun, M., Li, F., Zhang, J.: A multi-modality deep network for cold-start recommendation. Big Data Cogn. Comput. 2(1), 7 (2018). https://doi.org/10.3390/bdcc2010007. http://www.mdpi.com/2504-2289/2/1/7

    Article  Google Scholar 

  36. Tang, J., Wu, S., Sun, J., Su, H.: Cross-domain collaboration recommendation. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 1285–1293. ACM, New York (2012). https://doi.org/10.1145/2339530.2339730

  37. Valizadegan, H., Jin, R., Zhang, R., Mao, J.: Learning to rank by optimizing NDCG measure. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems 22, pp. 1883–1891. Curran Associates, Inc. (2009). http://papers.nips.cc/paper/3758-learning-to-rank-by-optimizing-ndcg-measure.pdf

  38. Wang, H., SHI, X., Yeung, D.Y.: Collaborative recurrent autoencoder: recommend while learning to fill in the blanks. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 415–423. Curran Associates, Inc. (2016)

    Google Scholar 

  39. Wang, H., Wang, N., Yeung, D.Y.: Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2015, pp. 1235–1244. ACM, New York (2015). https://doi.org/10.1145/2783258.2783273

  40. Wu, C.Y., Ahmed, A., Beutel, A., Smola, A.J., Jing, H.: Recurrent recommender networks. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, pp. 495–503. ACM, New York (2017). https://doi.org/10.1145/3018661.3018689

  41. Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders for top-n recommender systems. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, WSDM 2016, pp. 153–162. ACM, New York (2016). https://doi.org/10.1145/2835776.2835837

  42. Zhang, Q., Wu, D., Lu, J., Liu, F., Zhang, G.: A cross-domain recommender system with consistent information transfer. Decis. Support Syst. 104, 49–63 (2017). https://doi.org/10.1016/j.dss.2017.10.002. http://www.sciencedirect.com/science/article/pii/S016792361730180X

    Article  Google Scholar 

  43. Zhang, Y., Cao, B., Yeung, D.Y.: Multi-domain collaborative filtering. In: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI 2010, pp. 725–732. AUAI Press, Arlington (2010)

    Google Scholar 

  44. Zheng, Y., Tang, B., Ding, W., Zhou, H.: A neural autoregressive approach to collaborative filtering. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning, ICML 2016, vol. 48, pp. 764–773. JMLR.org (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heishiro Kanagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kanagawa, H., Kobayashi, H., Shimizu, N., Tagami, Y., Suzuki, T. (2019). Cross-Domain Recommendation via Deep Domain Adaptation. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds) Advances in Information Retrieval. ECIR 2019. Lecture Notes in Computer Science(), vol 11438. Springer, Cham. https://doi.org/10.1007/978-3-030-15719-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15719-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15718-0

  • Online ISBN: 978-3-030-15719-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics