Skip to main content

The Effect of Algorithmic Bias on Recommender Systems for Massive Open Online Courses

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2019)

Abstract

Most recommender systems are evaluated on how they accurately predict user ratings. However, individuals use them for more than an anticipation of their preferences. The literature demonstrated that some recommendation algorithms achieve good prediction accuracy, but suffer from popularity bias. Other algorithms generate an item category bias due to unbalanced rating distributions across categories. These effects have been widely analyzed in the context of books, movies, music, and tourism, but contrasting conclusions have been reached so far. In this paper, we explore how recommender systems work in the context of massive open online courses, going beyond prediction accuracy. To this end, we compared existing algorithms and their recommended lists against biases related to course popularity, catalog coverage, and course category popularity. Our study remarks even more the need of better understanding how recommenders react against bias in diverse contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code accompanying this paper can be downloaded at http://bit.ly/2AEban5.

References

  1. Class Central. https://www.class-central.com/. Accessed 17 Jan 2019

  2. Coursetalk. https://www.coursetalk.com/. Accessed 17 Jan 2019

  3. Abdollahpouri, H., Burke, R., Mobasher, B.: Controlling popularity bias in learning-to-rank recommendation. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 42–46. ACM (2017)

    Google Scholar 

  4. Adamopoulos, P., Tuzhilin, A., Mountanos, P.: Measuring the concentration reinforcement bias of recommender systems. rN (i) 1, 2 (2015)

    Google Scholar 

  5. Adomavicius, G., Bockstedt, J., Curley, S., Zhang, J.: De-biasing user preference ratings in recommender systems. In: Joint Workshop on Interfaces and Human Decision Making in Recommender Systems, p. 2 (2014)

    Google Scholar 

  6. Bellogín, A., Castells, P., Cantador, I.: Statistical biases in information retrieval metrics for recommender systems. Inf. Retrieval J. 20(6), 606–634 (2017)

    Article  Google Scholar 

  7. Boratto, L., Carta, S., Fenu, G., Saia, R.: Using neural word embeddings to model user behavior and detect user segments. Knowl. Based Syst. 108, 5–14 (2016)

    Article  Google Scholar 

  8. Boratto, L., Carta, S., Fenu, G., Saia, R.: Semantics-aware content-based recommender systems: design and architecture guidelines. Neurocomputing 254, 79–85 (2017)

    Article  Google Scholar 

  9. Cechinel, C., Sicilia, M.Á., SáNchez-Alonso, S., GarcíA-Barriocanal, E.: Evaluating collaborative filtering recommendations inside large learning object repositories. Inf. Process. Manag. 49(1), 34–50 (2013)

    Article  Google Scholar 

  10. Celma, Ò., Cano, P.: From hits to niches? Or how popular artists can bias music recommendation and discovery. In: Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition, p. 5. ACM (2008)

    Google Scholar 

  11. Channamsetty, S., Ekstrand, M.D.: Recommender response to diversity and popularity bias in user profiles. In: Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2017, Marco Island, Florida, USA, 22–24 May 2017, pp. 657–660 (2017). https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15524

  12. Collins, A., Tkaczyk, D., Aizawa, A., Beel, J.: Position bias in recommender systems for digital libraries. In: Chowdhury, G., McLeod, J., Gillet, V., Willett, P. (eds.) iConference 2018. LNCS, vol. 10766, pp. 335–344. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78105-1_37

    Chapter  Google Scholar 

  13. Cremonesi, P., Garzotto, F., Turrin, R.: User-centric vs. system-centric evaluation of recommender systems. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8119, pp. 334–351. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40477-1_21

    Chapter  Google Scholar 

  14. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 39–46. ACM (2010)

    Google Scholar 

  15. Dessì, D., Fenu, G., Marras, M., Recupero, D.R.: Bridging learning analytics and cognitive computing for big data classification in micro-learning video collections. Comput. Hum. Behav. 92, 468–477 (2018)

    Article  Google Scholar 

  16. Dessì, D., Fenu, G., Marras, M., Reforgiato Recupero, D.: COCO: semantic-enriched collection of online courses at scale with experimental use cases. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’18 2018. AISC, vol. 746, pp. 1386–1396. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77712-2_133

    Chapter  Google Scholar 

  17. Drachsler, H., Verbert, K., Santos, O.C., Manouselis, N.: Panorama of recommender systems to support learning. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 421–451. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_12

    Chapter  Google Scholar 

  18. Ekstrand, M.D., et al.: All the cool kids, how do they fit in? Popularity and demographic biases in recommender evaluation and effectiveness. In: Conference on Fairness, Accountability and Transparency, pp. 172–186 (2018)

    Google Scholar 

  19. Ekstrand, M.D., Tian, M., Kazi, M.R.I., Mehrpouyan, H., Kluver, D.: Exploring author gender in book rating and recommendation. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 242–250. ACM (2018)

    Google Scholar 

  20. Erdt, M., Fernández, A., Rensing, C.: Evaluating recommender systems for technology enhanced learning: a quantitative survey. IEEE Trans. Learn. Technol. 8(4), 326–344 (2015)

    Article  Google Scholar 

  21. Farzan, R., Brusilovsky, P.: Encouraging user participation in a course recommender system: an impact on user behavior. Comput. Hum. Behav. 27(1), 276–284 (2011)

    Article  Google Scholar 

  22. Felfernig, A., Boratto, L., Stettinger, M., Tkalčič, M.: Group Recommender Systems: An Introduction. SECE. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75067-5

    Book  Google Scholar 

  23. Fenu, G., Nitti, M.: Strategies to carry and forward packets in VANET. In: Cherifi, H., Zain, J.M., El-Qawasmeh, E. (eds.) DICTAP 2011. CCIS, vol. 166, pp. 662–674. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21984-9_54

    Chapter  Google Scholar 

  24. Griffiths, T.: Gibbs sampling in the generative model of latent Dirichlet allocation (2002)

    Google Scholar 

  25. Gunawardana, A., Shani, G.: Evaluating recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 265–308. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_8

    Chapter  Google Scholar 

  26. Guo, F., Dunson, D.B.: Uncovering systematic bias in ratings across categories: a Bayesian approach. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 317–320. ACM (2015)

    Google Scholar 

  27. Guo, G., Zhang, J., Sun, Z., Yorke-Smith, N.: LibRec: a Java library for recommender systems. In: UMAP Workshops, vol. 4 (2015)

    Google Scholar 

  28. Hajian, S., Bonchi, F., Castillo, C.: Algorithmic bias: from discrimination discovery to fairness-aware data mining. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2125–2126. ACM (2016)

    Google Scholar 

  29. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 263–272. IEEE (2008)

    Google Scholar 

  30. Jannach, D., Kamehkhosh, I., Bonnin, G.: Biases in automated music playlist generation: a comparison of next-track recommending techniques. In: Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization, pp. 281–285. ACM (2016)

    Google Scholar 

  31. Jannach, D., Lerche, L., Kamehkhosh, I., Jugovac, M.: What recommenders recommend: an analysis of recommendation biases and possible countermeasures. User Model. User-Adap. Inter. 25(5), 427–491 (2015)

    Article  Google Scholar 

  32. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)

    Article  Google Scholar 

  33. Jing, X., Tang, J.: Guess you like: course recommendation in MOOCs. In: Proceedings of the International Conference on Web Intelligence, pp. 783–789. ACM (2017)

    Google Scholar 

  34. Klašnja-Milićević, A., Vesin, B., Ivanović, M., Budimac, Z., Jain, L.C.: Recommender systems in E-learning environments. E-learning Systems. ISRL, vol. 112, pp. 51–75. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-41163-7_6

    Chapter  Google Scholar 

  35. Kopeinik, S., Kowald, D., Lex, E.: Which algorithms suit which learning environments? A comparative study of recommender systems in TEL. In: Verbert, K., Sharples, M., Klobučar, T. (eds.) EC-TEL 2016. LNCS, vol. 9891, pp. 124–138. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45153-4_10

    Chapter  Google Scholar 

  36. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–434. ACM (2008)

    Google Scholar 

  37. Manouselis, N., Vuorikari, R., Van Assche, F.: Collaborative recommendation of E-learning resources: an experimental investigation. J. Comput. Assist. Learn. 26(4), 227–242 (2010)

    Article  Google Scholar 

  38. MarketsandMarkets: Education and learning analytics market report (2018). https://www.marketsandmarkets.com/Market-Reports/learning-analytics-market-219923528.html

  39. Nagatani, K., Sato, M.: Accurate and diverse recommendation based on users’ tendencies toward temporal item popularity (2017)

    Google Scholar 

  40. Olteanu, A., Castillo, C., Diaz, F., Kiciman, E.: Social data: biases, methodological pitfalls, and ethical boundaries (2016)

    Google Scholar 

  41. Pampın, H.J.C., Jerbi, H., O’Mahony, M.P.: Evaluating the relative performance of collaborative filtering recommender systems. J. Univ. Comput. Sci. 21(13), 1849–1868 (2015)

    MathSciNet  Google Scholar 

  42. Rendle, S., Freudenthaler, C.: Improving pairwise learning for item recommendation from implicit feedback. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, pp. 273–282. ACM (2014)

    Google Scholar 

  43. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press (2009)

    Google Scholar 

  44. Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–34. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_1

    Chapter  MATH  Google Scholar 

  45. Selwyn, N.: Data entry: towards the critical study of digital data and education. Learn. Media Technol. 40(1), 64–82 (2015)

    Article  Google Scholar 

  46. Siemens, G., Long, P.: Penetrating the fog: analytics in learning and education. EDUCAUSE Rev. 46(5), 30 (2011)

    Google Scholar 

  47. Verbert, K., Drachsler, H., Manouselis, N., Wolpers, M., Vuorikari, R., Duval, E.: Dataset-driven research for improving recommender systems for learning. In: Proceedings of the 1st International Conference on Learning Analytics and Knowledge, pp. 44–53. ACM (2011)

    Google Scholar 

  48. Wasilewski, J., Hurley, N.: Are you reaching your audience? Exploring item exposure over consumer segments in recommender systems. In: Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, pp. 213–217. ACM (2018)

    Google Scholar 

  49. Xing, W., Chen, X., Stein, J., Marcinkowski, M.: Temporal predication of dropouts in MOOCs: reaching the low hanging fruit through stacking generalization. Comput. Hum. Behav. 58, 119–129 (2016)

    Article  Google Scholar 

  50. Zhou, T., Kuscsik, Z., Liu, J.G., Medo, M., Wakeling, J.R., Zhang, Y.C.: Solving the apparent diversity-accuracy dilemma of recommender systems. Proc. Nat. Acad. Sci. 107(10), 4511–4515 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Mirko Marras gratefully acknowledges Sardinia Regional Government for the financial support of his PhD scholarship (P.O.R. Sardegna F.S.E. Operational Programme of the Autonomous Region of Sardinia, European Social Fund 2014–2020, Axis III “Education and Training”, TG 10, PoI 10ii, SG 10.5).

This work has been partially supported by the Italian Ministry of Education, University and Research under the programme “Smart Cities and Communities and Social Innovation” during “ILEARNTV, Anytime, Anywhere” Project (DD n.1937 05.06.2014, CUP F74G14000200008 F19G14000910008), and by the Agència per a la Competivitat de l’Empresa, ACCIÓ, under “AlgoFair” Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovico Boratto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boratto, L., Fenu, G., Marras, M. (2019). The Effect of Algorithmic Bias on Recommender Systems for Massive Open Online Courses. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds) Advances in Information Retrieval. ECIR 2019. Lecture Notes in Computer Science(), vol 11437. Springer, Cham. https://doi.org/10.1007/978-3-030-15712-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15712-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15711-1

  • Online ISBN: 978-3-030-15712-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics