Skip to main content

Single-Cell Genomics and Metagenomics for Microbial Diversity Analysis

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

Abstract

Soil metagenomic analysis was previously limited by technological restrictions and the few reference genomes. The advent of next-generation ‘omics’ technologies has provided high-throughput methods for analysing community structure and reconstructing soil metagenomes. High-throughput sequencing technology and single-cell genomics have revolutionized metagenomic analysis by enabling large-scale sequencing at reduced sequencing costs with less time required. In the present chapter we discuss various technological advances in metagenomics, their processes and the methods of data analysis, and metagenomic success stories under various environments that can be applied for studying the functional and structural diversity of soil microorganisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abulencia CB, Wyborski DL, Garcia JA, Podar M, Chen W, Chang SH, Chang HW, Watson D, Brodie EL, Hazen TC, Keller M (2006) Environmental whole-genome amplification to access microbial populations in contaminated sediments. Appl Environ Microbiol 72:3291–3301

    Article  CAS  Google Scholar 

  • Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G (2016) Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis: supplementary issue: bioinformatics methods and applications for big metagenomics data. Evol Bioinform 12:EBO-S36436

    Article  Google Scholar 

  • Akinsemolu AA (2018) The role of microorganisms in achieving the sustainable development Goals. J Clean Prod 182:139–155

    Article  Google Scholar 

  • Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348

    CAS  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Meyer F et al. (2008) The RAST Server: rapid annotations using subsystems technology. BMC genomics, 9(1): 75 https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  Google Scholar 

  • Bai Y, Liang J, Liu R, Hu C, Qu J (2014) Metagenomic analysis reveals microbial diversity and function in the rhizosphere soil of a constructed wetland. Environ Technol 35:2521–2527

    Article  CAS  Google Scholar 

  • Bashir Y, Singh SP, Konwar BK (2014) Metagenomics: an application based perspective. Chin J Biol. https://doi.org/10.1155/2014/146030

    Article  CAS  Google Scholar 

  • Berg G, Raaijmakers JM (2018) Saving seed microbiomes. ISME J 12:1167–1170

    Article  CAS  Google Scholar 

  • Blainey PC (2012) The future is now: single-cell genomics of bacteria and archaea. https://doi.org/10.1111/1574-6976.12015

    Article  CAS  Google Scholar 

  • Brady A, Salzberg SL (2009) Phymm and Phymm BL: metagenomic phylogenetic classification with interpolated Markov models. Nat Methods 6:673–676

    Article  CAS  Google Scholar 

  • Carr R, Borenstein E (2014) Comparative analysis of functional metagenomic annotation and the mappability of short reads. PLoS One 9:e105776

    Article  CAS  Google Scholar 

  • Charuvaka A, Rangwala H (2011) Evaluation of short read metagenomic assembly. BMC Genomics 12:S8

    Article  Google Scholar 

  • Chen IMA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, Ratner A, Huang J, Andersen E, Huntemann M, Varghese N, Hadjithomas M, Tennessen K, Nielsen T, Ivanova NN, Kyrpides NC (2017) IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 4:D507–D516

    Article  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  Google Scholar 

  • Cong J, Yang Y, Liu X, Lu H, Liu X, Zhou J, Li D, Yin H, Ding J, Zhang Y (2015) Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession. Sci Rep-UK 5:10007

    Article  CAS  Google Scholar 

  • Creer S, Deiner K, Frey S, Porazinska D, Taberlet P, Thomas WK, Potter C, Bik HM (2016) The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol Evol 7:1008–1018

    Article  Google Scholar 

  • Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM, Eisen JA (2014) Phylogenetic analysis of genomes and metagenomes. PeerJ 2:e243

    Article  Google Scholar 

  • De Bourcy, CF, De Vlaminck I, Kanbar JN, Wang J, Gawad C, Quake SR (2014) A quantitative comparison of singlecell whole genome amplification methods. PloS one, 9(8), e105585. https://doi.org/10.1371/journal.pone.0105585.

    Article  CAS  Google Scholar 

  • Deleye L, Tilleman L, Vander Plaetsen AS, Cornelis S, Deforce D, Van Nieuwerburgh F (2017) Performance of four modern whole genome amplification methods for copy number variant detection in single cells. Sci. Rep. 7(1): 3422

    Google Scholar 

  • Dhillon V, Li X (2015) Single-cell genome sequencing for viral-host interactions. J Comput Sci Syst Biol 8:160–165

    CAS  Google Scholar 

  • Dröge J, McHardy AC (2012) Taxonomic binning of metagenome samples generated by next-generation sequencing technologies. Brief Bioinform 13:646–655

    Article  CAS  Google Scholar 

  • Ekblom R, Wolf JBW (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 7:1026–1042

    Article  Google Scholar 

  • Emmert-Buck MR et al (1996) Laser capture microdissection. Science 274:998–1001

    Article  CAS  Google Scholar 

  • Filippo CD, Ramazzotti M, Fontana P, Cavalieri D (2012) Bioinformatic approaches for functional annotation and pathway inference in metagenomics data. Brief Bioinform 13:696–710

    Article  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) the protein families database. Nucleic Acids Res 42:D222–D230

    Article  CAS  Google Scholar 

  • Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 3:175–188

    Article  CAS  Google Scholar 

  • Gilbert JA, Meyer F, Bailey MJ (2011) The future of microbial metagenomics (or is ignorance bliss?). ISME J 5:777–779

    Article  Google Scholar 

  • Gilbert JA, Jansson JK, Knight R (2014) The Earth Microbiome project: successes and aspirations. BMC Biology, 12(1), 69. https://doi.org/10.1186/s12915-014-0069-1

  • Gole J et al (2013) Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat Biotechnol 31:1126–1132

    Article  CAS  Google Scholar 

  • Guo J, Cole JR, Zhang Q, Brown CT, Tiedje JM (2016) Microbial community analysis with ribosomal gene fragments from shotgun metagenomes. Appl Environ Microbiol 82:157–166

    Article  CAS  Google Scholar 

  • Haft DH, Selengut JD, White O (2003) The TIGRFAMs database of protein families. Nucleic Acids Res 1:371–373

    Article  CAS  Google Scholar 

  • Ham RG (1965) Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc Natl Acad Sci U S A 53:288–293

    Article  CAS  Google Scholar 

  • Handelsman J (2004) The ecologist’s field guide to sequence-based identification of biodiversity. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  Google Scholar 

  • Hanning I, Diaz-Sanchez S (2015) The functionality of the gastrointestinal microbiome in non-human animals. Microbiome 3:51

    Article  Google Scholar 

  • Henson J, Tischler G, Ning Z (2012) Next-generation sequencing and large genome assemblies. Pharmacogenomics 13:901–915

    Article  CAS  Google Scholar 

  • Higashi S, Barreto AMS, Cantão ME, Vasconcelos ATR (2012) Analysis of composition-based metagenomic classification. BMC Genomics 13:S1

    Article  Google Scholar 

  • Hooper SD, Dalevi D, Pati A, Mavromatis K, Ivanova NN, Kyrpides NC (2010) Estimating DNA coverage and abundance in metagenomes using a gamma approximation. Bioinformatics 26:295–301

    Article  CAS  Google Scholar 

  • Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X,Wu H (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 148(5): 873–885

    Article  CAS  Google Scholar 

  • Hunter S, Corbett M, Denise H, Fraser M, Gonzalez-Beltran A, Hunter C, Jones P, Leinonen R, McAnulla C, Maguire E, Maslen J, Mitchell A, Nuka G, Oisel A, Pesseat S, Radhakrishnan R, Rocca-Serra P, Scheremetjew M, Sterk P, Vaughan D, Cochrane G, Field D, Sansone SA (2014a) metagenomics-a new resource for the analysis and archiving of metagenomic data. Nucleic Acids Res 42:D600–D606

    Article  CAS  Google Scholar 

  • Hunter S, Corbett M, Denise H, Fraser M, Gonzalez-Beltran A, Hunter C, Jones P, Leinonen R, McAnulla C, Maguire E, Maslen J, Mitchell A, Nuka G, Oisel A, Pesseat S, Radhakrishnan R, Rocca-Serra P, Scheremetjew M, Sterk P, Vaughan D, Cochrane G, Field D, Sansone SA (2014b) EBI metagenomics-a new resource for the analysis and archiving of metagenomic data. Nucleic Acids Res 42:D600–D606

    Article  CAS  Google Scholar 

  • Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386

    Article  CAS  Google Scholar 

  • Iwasaki Y, Abe T, Wada K, Wada Y, Ikemura T (2013) A novel bioinformatics strategy to analyze microbial big sequence data for efficient knowledge discovery: batch-learning self-organizing map (BLSOM). Microorganisms 1:137–157

    Article  CAS  Google Scholar 

  • Jansson J (2011) Soil microbes: metagenomic approaches. https://eesa.lbl.gov/soil-microbes-metagenomic-approaches/2011

  • Kalisky T, Quake SR (2011) Single-cell genomics. Nat Methods 8:311–314

    Article  CAS  Google Scholar 

  • Kamke J, Bayer K, Woyke T, Hentschel U (2012) Exploring symbioses by single-cell genomics. Biol Bull 223:30–43

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  Google Scholar 

  • Keegan KP, Glass EM, Meyer F (2016) MG-RAST, a metagenomics service for analysis of microbial community structure and function. Methods Mol Biol 1399:207–233

    Article  CAS  Google Scholar 

  • Kembel SW, Eisen JA, Pollard KS, Green JL (2011) The phylogenetic diversity of metagenomes. PLoS One 6:e23214

    Article  CAS  Google Scholar 

  • Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS et al (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153:178–192

    Article  CAS  Google Scholar 

  • Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P (2008) A bioinformatician’s guide to metagenomics. Microbiol Mol Biol Rev 72:557–578

    Article  CAS  Google Scholar 

  • Landry ZC, Giovanonni SJ, Quake SR, Blainey PC (2013) Optofluidic cell selection from complex microbial communities for single-genome analysis. Methods Enzymol 531:61–90

    Article  CAS  Google Scholar 

  • Lasken RS (2012) Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol 10:631–640. https://doi.org/10.1038/nrmicro2857

    Article  CAS  Google Scholar 

  • Lecault V, White AK, Singhal A, Hansen CL (2012) Microfluidic single cell analysis: from promise to practice. Curr Opin Chem Biol 16:381–390

    Article  CAS  Google Scholar 

  • Leung K et al (2012) A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc Natl Acad Sci U S A 109:7665–7670

    Article  CAS  Google Scholar 

  • Leung ML, Wang Y, Waters J, Navin NES (2015) single nucleus exome sequencing. Genome Biol 16:55

    Article  CAS  Google Scholar 

  • Li H-Y et al (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Article  Google Scholar 

  • Lichter P, Ledbetter SA, Ledbetter DH, Ward DC (1990) Fluorescence in situ hybridization with Alu and L1 polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines. Proc Natl Acad Sci U S A 87:6634–6638

    Article  CAS  Google Scholar 

  • Lin HH, Liao YC (2016) Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep 6:24175

    Article  CAS  Google Scholar 

  • Lovett M (2013) The applications of single-cell genomics. Hum Mol Genet 22:R22–R26

    Article  CAS  Google Scholar 

  • Macaulay IC, Voet T (2014) Single cell genomics: advances and future perspectives. PLoS Genet 10:e1004126

    Article  CAS  Google Scholar 

  • Macosko EZ et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214

    Article  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Galindo-flores H, Lopez-meyer M (2009) An introduction to metagenomics. In: Chauhan AK, Varma A (eds) A textbook of molecular biotechnology. I. K. International Publishing House Pvt Ltd, New Delhi

    Google Scholar 

  • Marcy Y, Ishoey T, Lasken RS, Stockwell TB, Walenz BP, Halpern AL, Beeson KY, Goldberg SMD, Quake SR (2007) Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet 3:1702–1708

    Article  CAS  Google Scholar 

  • Martínez-García M, Santos F, Moreno-Paz M, Parro V, Antón J (2014) Unveiling viral-host interactions within the ‘microbial dark matter’. Nat Commun 5:4542

    Article  CAS  Google Scholar 

  • Mathé C, Sagot MF, Schiex T, Rouzé P (2002) Survey and summary: current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res 30:4103–4117

    Article  Google Scholar 

  • McHardy AC, Martin HG, Tsirigos A, Hugenholtz P, Rigoutsos I (2007) Accurate phylogenetic classification of variable-length DNA fragments. Nat Methods 4(63–72):10

    Google Scholar 

  • Melcher U, Verma R, Schneider WL (2014) Metagenomic search strategies for interactions among plants and multiple microbes. Front Plant Sci 5:268

    Article  Google Scholar 

  • Mendoza MLZ, Sicheritz-Pontén T, Gilbert MTP (2015) Environmental genes and genomes: understanding the differences and challenges in the approaches and software for their analyses. Brief Bioinform 16:745–758

    Article  Google Scholar 

  • Miller JR, Koren S, Sutton G (2010) Assembly algorithms for next-generation sequencing data. Genomics 95:315–327

    Article  CAS  Google Scholar 

  • Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Verezemska O, Isbandi M, Thomas AD, Ali R, Sharma K, Kyrpides NC, Reddy TB (2017) Data updates and feature enhancements. Nucleic Acids Res 45:D446–D456

    Article  CAS  Google Scholar 

  • Muller J, Szklarczyk D, Julien P, Letunic I, Roth A, Kuhn M, Powell S, von Mering C, Doerks T, Jensen LJ, Bork P (2010) extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations. Nucleic Acids Res 38:D190–D195

    Article  CAS  Google Scholar 

  • Navin N et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94

    Article  CAS  Google Scholar 

  • Overbeek MV, Kusuma WA, Buono A (2013). Clustering metagenome fragments using growing self organizing map. In 2013 International Conference on Advanced Computer Science and Information Systems (ICACSIS) (pp. 285–289). IEEE.

    Google Scholar 

  • Perkel JM (2012) Single-cell genomics: defining microbiology’s dark matter. BioTechniques 52:301–303

    Article  CAS  Google Scholar 

  • Ponomarova O, Patil KR (2015) Metabolic interactions in microbial communities: untangling the Gordian knot. Curr Opin Microbiol 27:37–44

    Article  Google Scholar 

  • Prakash O, Sharma R, Rahi P, Karthikeyan N (2014) Role of microorganisms in plant nutrition and health. In: Nutrient use efficiency: from basics to advances, pp 125–161

    Google Scholar 

  • Pride DT, Schoenfeld T (2008) Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures. BMC Genomics 9:420

    Article  CAS  Google Scholar 

  • Rajendhran J, Gunasekaran P (2011) Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 166:99–110

    Article  CAS  Google Scholar 

  • Randle-Boggis RJ, Helgason T, Sapp M, Ashton PD (2016) Evaluating techniques for metagenome annotation using simulated sequence data. FEMS Microbiol Ecol 92:95

    Article  CAS  Google Scholar 

  • Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment, pp 29–57

    Google Scholar 

  • Raynaud X, Nunan N (2014) Spatial ecology of bacteria at the microscale in soil. PLoS One 9:e87217

    Article  CAS  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437

    Article  CAS  Google Scholar 

  • Rinke C et al (2014) Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat Protoc 9:1038–1048

    Article  CAS  Google Scholar 

  • Rodriguez-R LM, Konstantinidis KT (2014) Bypassing cultivation to identify bacterial species. Microbe, 9(3): 111–8

    Google Scholar 

  • Rusch DB, Halpern AL, Sutton G et al (2007) The sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical pacific. PLoS Biol 5:e77

    Article  CAS  Google Scholar 

  • Salzberg SL, Pertea M, Delcher AL, Gardner MJ, Tettelin H (1999) Interpolated Markov models for eukaryotic gene finding. Genomics 59:24–31

    Article  CAS  Google Scholar 

  • Sebastian R, Kim JY, Kim TH, Lee KT (2013) Metagenomics: a promising approach to assess enzymes biocatalyst for biofuel production. Asian J Biotechnol 5:33–50

    Article  CAS  Google Scholar 

  • Sedlar K, Kupkova K, Provaznik I (2017) Bioinformatics strategies for taxonomy independent binning and visualization of sequences in shotgun metagenomics. Comput Struct Biotechnol J 15:48–55

    Article  CAS  Google Scholar 

  • Segata N, Boernigen D, Tickle TL, Morgan XC, Garrett WS, Huttenhower C (2013) Computational meta’omics for microbial community studies. Mol Syst Biol 9:666. https://doi.org/10.1038/msb.2013.22

    Article  Google Scholar 

  • Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M (2007) CAMERA: a community resource for metagenomics. PLoS Biol 5:e75

    Article  CAS  Google Scholar 

  • Shah N, Tang H, Doak TG, Ye Y (2011) Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics. Symp Biocomput Pac:165–176. https://doi.org/10.1142/97898143350580018

  • Shapiro, B. J. (2017). The population genetics of pangenomes. Nature Microbiology, 2(12), 1574–1574. https://doi.org/10.1038/s41564-017-0066-6

    Article  CAS  Google Scholar 

  • Sharon I (2010) Computational methods for metagenomic analysis. Ph.D Thesis, The Technion – Israel Institute of Technology

    Google Scholar 

  • Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 5:209

    Article  Google Scholar 

  • Shokrall SI, Spall JL, Gibson JF, Hajibabaei M (2012) Mol Ecol 21:1794–1805

    Article  CAS  Google Scholar 

  • Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 2:121–132

    Article  CAS  Google Scholar 

  • Stanley CE, van der Heijden MG (2017) Microbiome-on-a-Chip: new frontiers in plant-microbiota research. Trends Microbiol 25:610–613

    Article  CAS  Google Scholar 

  • Stepanauskas R (2012) Single cell genomics: an individual look at microbes. Curr Opin Microbiol 15:613–620

    Article  CAS  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 11:41

    Article  Google Scholar 

  • Teeling H, Glöckner FO (2012) Current opportunities and challenges in microbial metagenome analysis – a bioinformatic perspective. Brief Bioinform 3:728–742

    Article  Google Scholar 

  • Teeling H, Waldmann J, Lombardot T, Bauer M, Glöckner FO (2004) TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences. BMC Bioinform 5:163

    Article  CAS  Google Scholar 

  • Telenius H et al (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725

    Article  CAS  Google Scholar 

  • Thomas T, Gilbert J, Meyer F (2012) Metagenomics – a guide from sampling to data analysis. Microb Inform Exp 2:3

    Article  Google Scholar 

  • Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 10:1491–1498

    Article  CAS  Google Scholar 

  • Troutt AB, McHeyzer-Williams MG, Pulendran B, Nossal GJ (1992) Ligation-anchored PCR: a simple amplification technique with single-sided specificity. Proc Natl Acad Sci U S A 89:9823–9825

    Article  CAS  Google Scholar 

  • Tseng CH, Tang SL (2014) Marine microbial metagenomics: from individual to the environment. Int J Mol Sci 15:8878–8892

    Article  CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature, 449(7164): 804-810. https://doi.org/10.1038/nature06244

    Article  CAS  Google Scholar 

  • von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  • Walker A, Parkhill J (2008) Single-cell genomics. Nat Rev Microbiol 6:176–177

    Article  CAS  Google Scholar 

  • Wang Z, Chen Y, Li Y (2004) A brief review of computational gene prediction methods. Genomics Proteomics Bioinformatics 2:216–221

    Article  CAS  Google Scholar 

  • Wang C, Dong D, Wang H, Müller K, Qin Y, Wang H, Wu W (2016) Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol Biofuels 9:22

    Article  CAS  Google Scholar 

  • White JR, Navlakha S, Nagarajan N, Ghodsi MR, Kingsford C, Pop M (2010) Alignment and clustering of phylogenetic markers – implications for microbial diversity studies. BMC Bioinform 11:152

    Article  CAS  Google Scholar 

  • White AK et al (2011) High-throughput microfluidic singlecell RT-qPCR. Proc Natl Acad Sci U S A 108:13999–14004

    Article  CAS  Google Scholar 

  • Wooley JC, Ye Y (2009) Metagenomics: facts and artifacts, and computational challenges. J Comput Sci Technol 25:71–81

    Article  Google Scholar 

  • Woyke T, Jarett J (2015) Function-driven single-cell genomics. Microb Biotechnol 8:38–39

    Article  Google Scholar 

  • Wu M, Eisen JA (2008) A simple, fast, and accurate method of phylogenomic inference. Genome Biol. https://doi.org/10.1186/gb-2008-9-10-r151

    Article  CAS  Google Scholar 

  • Wu M, Scott AJ (2012) Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28:1033–1034

    Article  CAS  Google Scholar 

  • Wu G, Feng B, Xu J, Zhu XT, Li YC, Zeng NK, Yang ZL (2014) Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. Fungal Divers. 69(1): 93–115

    Article  Google Scholar 

  • Yooseph S, Sutton G, Rusch DB et al (2007) The sorcerer II global ocean sampling expedition: expanding the universe of protein families. PLoS Biol 5:e16

    Article  CAS  Google Scholar 

  • Zarraonaindia I, Smith DP, Gilbert JA (2013) Beyond the genome: community-level analysis of the microbial world. Biol Philos 28:261–282

    Article  Google Scholar 

  • Zhang MQ (2002) Computational prediction of eukaryotic protein-coding genes. Nat Rev Genet 3:698–709

    Article  CAS  Google Scholar 

  • Zhang L et al (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A 89:5847–5851

    Article  CAS  Google Scholar 

  • Zhang DY, Brandwein M, Hsuih T, Li HB (2001) Ramification amplification: a novel isothermal DNA amplification method. Mol Diagn 6:141–150

    Article  CAS  Google Scholar 

  • Zhou J, Bruns MA, Tiedje J M (1996) DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62(2), 316–322.

    Google Scholar 

  • Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio 27:6

    Google Scholar 

  • Zhou X, Li Z, Zheng T, Yan Y, Li P, Odey EA, Mang HP, Uddin SM (2018) Review of global sanitation development. Environ. Int. 120:246-61.

    Article  Google Scholar 

  • Zong C, Lu S, Chapman AR, Xie XS (2012) Genomewide detection of single-nucleotide and copy-number variations of a single human cell. Science 338:1622–1626

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubey, R.K. et al. (2020). Single-Cell Genomics and Metagenomics for Microbial Diversity Analysis. In: Unravelling the Soil Microbiome. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-030-15516-2_4

Download citation

Publish with us

Policies and ethics