Skip to main content

On Approximate Solutions of Linear and Nonlinear Singular Integral Equations

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Current Trends in Mathematical Analysis and Its Interdisciplinary Applications
  • 537 Accesses

Abstract

Singular integral equation theory has broad applications to theoretical and practical investigations in mathematics, mathematical physics, hydrodynamic and elasticity theory. This fact motivated many researchers to work on this field and their studies have showed that finding approximate solutions of linear and nonlinear singular integral equations in Banach spaces provides many applications even if their definite solutions cannot be found or if there are difficulties in finding them. Thus, the central theme of the recent studies is to develop effective approximate solution methods for the linear and nonlinear singular integral equations in Banach spaces. This chapter has been devoted to investigating approximate solutions of linear and nonlinear singular integral equations in Banach spaces using technical methods such as collocation method, quadrature method, Newton–Kantorovich method, monotonic operators method, and fixed point theory depending on the type of the equations. We provide sufficient conditions for the convergence of these methods and investigate some properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.A. Abdullayev, E.H. Khalilov, Ground of the collocation method for a class of boundary integral equations. Differ. Equ. 49(1), 82–86 (2004)

    Google Scholar 

  2. V.M. Alexandrov, E.V. Kovalenko, Problems with Mixed Boundary Conditions in Continuum Mechanics (Nauka, Moscow 1986)

    Google Scholar 

  3. V.M. Alexandrov, I.I. Kudish, Asymptotic methods in Criffits problem. Appl. Math. Mech. 53, 665–671 (1989)

    MathSciNet  Google Scholar 

  4. V.M. Alexandrov, S.M. Mkitaryan, Contact Problems for Bodies with Thin Coverings and Interlayers (Nauka, Moscow, 1983)

    Google Scholar 

  5. S.M. Amer, On solution of non-linear singular integral equations with shift in generalized Holder space. Chaos, Solutions Fractals 12, 1323–1334 (2001)

    MATH  Google Scholar 

  6. K.E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind (SIAM, Philadelphia, 1976)

    MATH  Google Scholar 

  7. A.A. Badr, Integro-differential equations with Cauchy kernel. J. Comput. Appl. Math. 134, 191199 (2001)

    MathSciNet  Google Scholar 

  8. S.M. Belotserkhovskii, I. K. Lifanov, Numerical Solutions of Singular Integral Equations (Nauka, Moscow, 1985)

    Google Scholar 

  9. L. Bers, L. Nirenberg, On a representation for linear elliptic systems with discontinuous coefficients and its application. Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali (Trieste, 1954)

    Google Scholar 

  10. B.V. Bojarskii, Quasiconformal mappings and general structural properties of system of non-linear elliptic in the sense of Lavrentev. Sympos. Math. 18, 485–499 (1976)

    MathSciNet  Google Scholar 

  11. Y.G. Borisovich, V.G. Zvyagin, Non-linear Fredholm maps and the Leray-Schauder theory. Russ. Math. Surv. 32(4), 1–54 (1977)

    MATH  Google Scholar 

  12. D.L. Colton, R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York 1983)

    MATH  Google Scholar 

  13. I.K. Daugavet, Introduction to Approximation Theory of Functions (Leningrad University, Leningrad, 1977) (in Russian)

    MATH  Google Scholar 

  14. G. David, Courbes corde-are et espaces de Hardy generalizes. Ann. Inst. Fourier 32(3), 227–239 (1982)

    MathSciNet  MATH  Google Scholar 

  15. R. Duduchava, An application of singular integral equations to some problems of elasticity. Integr. Equ. Oper. Theory 5(1), 475–489 (1982)

    MathSciNet  MATH  Google Scholar 

  16. R. Duduchava, S. Prösdorf, On the approximation of singular integral equations by equations with smooth kernels. Integr. Equ. Oper. Theory 21(2), 224–237 (1995)

    MathSciNet  MATH  Google Scholar 

  17. L.R. Duduchava, D. Mitrea, M. Mitrea, Differential operators and boundary value problems on hypersurfaces. Math. Nachr. 279(9–10), 996–1023 (2006)

    MathSciNet  MATH  Google Scholar 

  18. J. Frankel, A. Galerkin, Solution to a regularized Cauchy singular integro-differential equation. Q. Appl. Math. L11(2), 245–258 (1995)

    MathSciNet  MATH  Google Scholar 

  19. B.G. Gabdulkhaev, Finite approximations of singular integrals, direct solution methods of singular integral and integro-differential equations. Itogi Nauki i Tekniki, VINITI AN SSSR, Math. Anal. 18, 25–31 (1980)

    Google Scholar 

  20. B.G. Gabdulkhaev, Optimal Approximation to Linear Problem (Kazan University Publications, Kazan, 1980)

    Google Scholar 

  21. B.G. Gabdulkhaev, V.E. Gorlov, On the optimal algorithm of the approximate solutions of singular integral equations. Izv. Vuzov Math. 11, 13–31 (1976)

    MathSciNet  Google Scholar 

  22. F.D. Gakhov, Boundary Value Problems, English Edition (Pergamon Press, Oxford, 1966)

    Google Scholar 

  23. C.D. Green, Integral Equation Methods (Thomas Nelson, New York, 1969)

    MATH  Google Scholar 

  24. A.I. Gusseinov, K.S. Mukhtarov, Introduction to the Theory of Nonlinear Singular Integral Equations (Nauka, Moscow, 1980) (in Russian)

    Google Scholar 

  25. H. Hochstadt, Integral Equations (Wiley Interscience, New York, 1973)

    MATH  Google Scholar 

  26. V.V. Ivanov, The Theory of Approximate Methods and its Application to the Numerical Solution of Singular Integral Equations (Naukova Dumka, Kiev, 1968)

    Google Scholar 

  27. D.S. Jones, Integral equations for the exterior acoustic problem. Q. J. Mech. Appl. Math. 27, 129–142 (1974)

    MathSciNet  MATH  Google Scholar 

  28. P. Junghanns, K. Müller, A collocation method for non-linear Cauchy singular integral equations. J. Comput. Appl. Math. 115, 283–300 (2000)

    MathSciNet  MATH  Google Scholar 

  29. A.I. Kalandia, Mathematical Methods of the Two-Dimensional Elastics (Nauka, Moscow, 1973)

    Google Scholar 

  30. A.C. Kaya, F. Erdogan, On the solution of integral equation with strongly singular kernels. Q. Appl. Math. 45, 105–122 (1987)

    MathSciNet  MATH  Google Scholar 

  31. E.G. Khalilov, Approximate methods for the solution of surface integral equations, Ph.D. thesis, Baku, 1999 (in Russian)

    Google Scholar 

  32. E.H. Khalilov, On an approximate solution of a boundary integral equation of mixed problem for Helmholtz equation. Proc. Inst. Math. Mach. NASA 31, 105–110 (2009)

    MathSciNet  MATH  Google Scholar 

  33. R.E. Kleinman, G.F. Roach, Boundary integral equations for the three-dimensional Helmholtz equation. SIAM Rev. 16, 214–236 (1974)

    MathSciNet  MATH  Google Scholar 

  34. R.E. Kleinman, G.F. Roach, On modified Green functions in exterior problems for the Helmholtzs equation. Proc. R. Soc. Lond. A 383, 313–333 (1982)

    MathSciNet  MATH  Google Scholar 

  35. A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1981) (in Russian)

    MATH  Google Scholar 

  36. M.A. Krasnosel’skii, P.P. Zabreyko, Geometric Methods of Nonlinear Analysis (Nauka, Moscow, 1975)

    Google Scholar 

  37. M.A. Krasnosel’skii, G.M. Vainikko, P.P. Zabreiko, Ya. B. Rutitskii, V. Ya. Stetsenko, Approximate Solution of Operator Equations (Wolters-Noordhoff Publishing, Groningen, 1972)

    Google Scholar 

  38. E. Kreyszig, Introductory Functional Analysis with Applications (Wiley, New York, 1978)

    MATH  Google Scholar 

  39. I.I. Kudish, Numerical solution methods of a one class nonlinear integral and integro-differential equations. J. Numer. Math. Math. Phys. 26, 14931511 (1986)

    MathSciNet  Google Scholar 

  40. Y.A. Kustov, B.I. Musaev, A Cubature Formula for Double Singular Integral and its Application. VINITI, No 4281 (1981) (in Russian)

    Google Scholar 

  41. E. Lackau, W. Tutschke, Complex Analysis, Methods, Trends and Applications (Pergamon Press, London, 1985)

    Google Scholar 

  42. E.G. Ladopoulos, On the numerical solution of the finite-part singular integral equations of the first and the second kind used in fracture mechanics. Comput. Methods Appl. Mech. Eng. 65, 253–266 (1987)

    MathSciNet  MATH  Google Scholar 

  43. E.G. Ladopoulos, Singular integral representation of three-dimensional plasticity problem. Theor. Appl. Fract. Mech. 8, 205–211 (1987)

    Google Scholar 

  44. E.G. Ladopoulos, On a new integration rule with the Gegenbauer polynomials for singular integral equations used in the theory of elasticity. Ing. Arch. 58, 35–46 (1988)

    MATH  Google Scholar 

  45. E.G. Ladopoulos, On the numerical evaluation of the general type of finite-part singular integrals and integral equations used in fracture mechanics. J. Eng. Fract. Mech. 31, 315–337 (1988)

    Google Scholar 

  46. E.G. Ladoloulos, The general type of finite-part singular integrals and integral equations with logarithmic singularities used in fracture mechanics. Acta Mech. 75, 275–285 (1988)

    Google Scholar 

  47. E.G. Ladopoulos, On the solution of the finite-part singular integro-differential equations used in two-dimensional aerodynamics. Arch. Mech. 41, 925–936 (1989)

    MATH  Google Scholar 

  48. E.G. Ladopoulos, Singular integral operators method for two-dimensional plasticity problems. Comput. Struct. 33, 859–865 (1989)

    MathSciNet  MATH  Google Scholar 

  49. E.G. Ladopoulos, Non-linear integro-differential equations used in orthotropic shallow spherical shell analysis. Mech. Res. Commun. 18, 111–119 (1991)

    MATH  Google Scholar 

  50. E.G. Ladopoulos, Relativistic elastic stress analysis for moving frames. Rev. Roum. Sci. Tech. Mech. Appl. 36, 195–209 (1991)

    MathSciNet  Google Scholar 

  51. E.G. Ladopoulos, Singular integral operators method for three-dimensional elastoplastic stress analysis. Comput. Struct. 38, 1–8 (1991)

    MATH  Google Scholar 

  52. E.G. Ladopoulos, Singular integral operators method for two-dimensional elastoplastic stress analysis. Forsch. Ingenieurwes. 57, 152–158 (1991)

    Google Scholar 

  53. E.G. Ladopoulos, New aspects for generalization of the Sokhotski-Plemelj formulae for the solution of finite-part singular integrals used in fracture mechanics. Int. J. Fract. 54, 317–328 (1992)

    MathSciNet  Google Scholar 

  54. E.G. Ladopoulos, Non-linear singular integral equations elastodynamics by using Hilbert transformations. J. Nonlinear Anal. Real World Appl. 6, 531–536 (2005)

    MATH  Google Scholar 

  55. E.G. Ladopoulos, V.A. Zisis, Existence and uniqueness for non-linear singular integral equations used in fluid mechanics. Appl. Math. 42, 345–367 (1997)

    MathSciNet  MATH  Google Scholar 

  56. E.G. Ladopoulos, V.A. Zisis, Non-linear finite-part singular integral equations arising in two-dimensional fluid mechanics. J. Nonlinear Anal. 42, 277–290 (2000)

    MATH  Google Scholar 

  57. P. Linz, Analytical and Numerical Methods for Volterra Equations (SIAM, Philadelphia, 1985)

    MATH  Google Scholar 

  58. J.K. Lu, Boundary Value Problems for Analytic Functions (World Scientific, Singapore, 1993)

    MATH  Google Scholar 

  59. K. Mamedov, N. Kosar, Continuity of the scattering function and the Levinson type formula of the boundary value problem. Int. J. Contemp. Math. Sci. 5(4), 159–170 (2010)

    MathSciNet  MATH  Google Scholar 

  60. K. Mamedov, H. Menken, On the inverse problem of the scattering theory for a boundary problem. Geom. Integrability Quantization 7, 226–237 (2006)

    MathSciNet  MATH  Google Scholar 

  61. V.N. Monahov, Boundary Value Problems with Free Boundaries for Elliptic Systems (Nauka, Novosibirsk, 1977)

    Google Scholar 

  62. A.S. Mshim Ba, W. Tutschke, Functional-Analytic Methods in Complex Analysis and Applications to Partial Differential Equations (World Scientific, Singapore, 1990)

    Google Scholar 

  63. B.I. Musaev, On approximate solution of the singular integral equations. AN Az. SSR, Institute of Physics Preprint No 17 (1986)

    Google Scholar 

  64. B.I. Musaev, On the approximate solution of the singular integral equations. Izv. AN Az. SSSR, Fizik-Teknik Science 5, 1521 (1986)

    Google Scholar 

  65. B.I. Musaev, On the approximate solution of singular integral equations with negative index by Bubnov-Galerkin and collocation methods. Sov. Math. Dokl. 35(2), 411–416 (1987)

    MATH  Google Scholar 

  66. N.I. Muskelishvili, Singular Integral Equations (Noordhoff, Groningen, 1953)

    Google Scholar 

  67. N.I. Muskhelishvili, Singular Integral Equations, English Edition (Noordhoff, Groningen, 1968)

    Google Scholar 

  68. N. Mustafa, On the approximate solution of non-linear operator equations. Far East J. Appl. Math. 27(1), 121–136 (2007)

    MathSciNet  MATH  Google Scholar 

  69. N. Mustafa, Fixed point theory and approximate solutions of non-linear singular integral equations. Complex Variables Elliptic Equ. 53(11), 1047–1058 (2008)

    MathSciNet  MATH  Google Scholar 

  70. N. Mustafa, Non-linear singular integro-differential equations. Complex Variables Elliptic Equ. 53(9), 879–886 (2008)

    MathSciNet  MATH  Google Scholar 

  71. N. Mustafa, On the approximate solution of singular integral equations with negative index. Complex Variables 55(7), 621–631 (2010)

    MathSciNet  MATH  Google Scholar 

  72. N. Mustafa, Newton–Kantorovich method for two-dimensional non-linear singular integral equations. Maejo Int. J. Sci. Technol. 10(1), 41 (2016)

    Google Scholar 

  73. N. Mustafa, Some integral operators and their properties. Kuwait J. Sci. 43(4), 45–55 (2016)

    MathSciNet  MATH  Google Scholar 

  74. N. Mustafa, C. Ardil, On the approximate solution of a non-linear singular integral equation. Int. J. Comput. Math. Sci. 3(1), 1–7 (2009)

    MathSciNet  Google Scholar 

  75. N. Mustafa, E.H. Khalilov, The collocation method for the solution of boundary integral equations. Appl. Anal. 88(12), 1665–1675 (2009)

    MathSciNet  MATH  Google Scholar 

  76. N. Mustafa, M.I. Yazar, On the approximate solution of a non-linear singular integral equation with Cauchy kernel. Far East J. Appl. Math. 27(1), 101–119 (2007)

    MathSciNet  MATH  Google Scholar 

  77. N.M. Mustafaev, On the Approximate Solution of the Singular Integral Equation that is Defined on Closed Smooth Curve. Singular Integral Operators, vol. 1 (AGU Publications, Baku, 1987), pp. 91–99

    Google Scholar 

  78. N. Mustafaev, Approximate solution of non-linear singular integral equations. VINITI (338-B88), 1–36 (1988)

    Google Scholar 

  79. N.M. Mustafaev, Error of the approximation to the singular integral equation that is defined on closed smooth curve. In Az. NIINTI (338-B88), 137 (1988)

    Google Scholar 

  80. N.M. Mustafaev, Approximate formulas for singular integrals and their application to the approximate solution of singular integral equations that are defined on closed smooth curve, Ph.D. thesis, AN Az. SSR, Institute of Math. and Mech., Baku., 1991

    Google Scholar 

  81. V.V. Panasyuk, M.P. Savruk, Z.T. Nazarchuk, Singular Integral Equations Methods in Two-Dimensional Diffraction Problems (Naukova Dumka, Kiev, 1984)

    Google Scholar 

  82. V.Z. Parton, P.I. Perlin, Integral Equations of Elasticity Theory (Nauka, Moscow, 1977)

    MATH  Google Scholar 

  83. G.Y. Popov, Contact Problems for a Linearly Deformable Base (Kiev, Odessa, 1982)

    Google Scholar 

  84. S. Prösdorf, B. Silberman, Projektionsverfahren und die naherungsweise Losung Singularer (Gleichungen, Leipziq, 1977)

    Google Scholar 

  85. S. Prösdorf, Some Class Singular Integral Equations (Mir, Moscow, 1979)

    Google Scholar 

  86. H. Reşidoğlu (Kh. amedov), On the planar problem of the theory elasticity. Works SSU 1, 27–32 (2001)

    Google Scholar 

  87. M.H. Saleh, Basis of quadrature method for non-linear singular integral equations with Hilbert kernel in the spaceH φ,k. In Az. NIINTI 279, 1–40 (1984)

    Google Scholar 

  88. V.N. Seychuk, Direct methods of the solutions of singular integral equations that are defined on Lyapunov curve, Ph.D. thesis, Kishinev University, Kishinev, 1987

    Google Scholar 

  89. F.G. Trikomi, Integral Equations (Dover, New York, 1985)

    Google Scholar 

  90. W. Tutshke, Lözung nichtlinearer partieller differential-gleichungssysteme erster Ordnung in der Ebene cluch verwendung einer komlexen Normalform. Math. Nachr. 75, 283–298 (1976)

    MathSciNet  Google Scholar 

  91. W. Tzong-Mou, Solving the non-linear equations by the Mewton-homotopy continuation method with adjustable auxiliary homotopy functions. J. Appl. Math. Comput. 173, 383–388 (2006)

    MATH  Google Scholar 

  92. F. Ursell, On the exterior problems of acoustics: II. Proc. Camb. Philol. Soc. 84, 545–548 (1978)

    MathSciNet  MATH  Google Scholar 

  93. G.M. Vaynicco, The regular convergence of operators and the approximate solution of equations, Moscow V sb. Math. Anal. (Itogi nauki i tekniki VINITI AN SSSR) 16, 553 (1979) (in Russian)

    Google Scholar 

  94. I.N. Vekua, Generalized Analytic Functions (Pergamon Press, London, 1962)

    MATH  Google Scholar 

  95. V.A. Zolotaryevskii, On the Approximate solution of singular integral equations. Math. Res. Kishinev Shtiintsa 9(3), 82–94 (1974)

    MathSciNet  Google Scholar 

  96. V.A. Zolotaryevskii, V.N. Seychuk, The solution of the singular integral equation that is defined on Lyapunov curve by collocation method. Differ. Equ. 19(6), 1056–1064 (1983)

    Google Scholar 

  97. A. Zygmund, A.P. Calderon, On the existence of singular integrals. Acta Math. 88, 85–139 (1952)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mustafa, N., Nezir, V. (2019). On Approximate Solutions of Linear and Nonlinear Singular Integral Equations. In: Dutta, H., Kočinac, L.D.R., Srivastava, H.M. (eds) Current Trends in Mathematical Analysis and Its Interdisciplinary Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-15242-0_19

Download citation

Publish with us

Policies and ethics