Skip to main content

Abstract

Master generalized sampling series expansion is presented for entire functions (signals) coming from a class whose members satisfy an extended exponential boundedness condition. Firstly, estimates are given for the remainder of Maclaurin series of those functions and consequent derivative sampling results are obtained and discussed.

The established results are employed in evaluating the related remainder term of signals which occur in sampling series expansion of stochastic processes and random fields (not necessarily stationary or homogeneous) whose spectral kernel satisfies the relaxed exponential boundedness. The derived truncation error upper bounds enable to obtain mean-square master generalized derivative sampling series expansion formulae either for harmonizable Piranashvili-type stochastic processes or for random fields.

Finally, being the sampling series convergence rate exponential, almost sure P sampling series expansion formulae are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Bernstein class \(B_\sigma ^p\) consists of entire functions (in the complex plane) of exponential type at most σ, whose restriction to \(\mathbb R\) belongs to \(L^p(\mathbb R)\). We are interested here in \(B_\sigma ^2\)-functions since our study belongs to the L 2-correlation theory area.

  2. 2.

    The existence of such representation is ensured by the Karhunen–Cramèr theorem.

References

  1. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, vol. 55 (National Bureau of Standards, Washington, D. C., 1964); 9th Reprinted edition, Dover Publications, New York, 1972

    Google Scholar 

  2. Yu.K. Belyaev, Analytical random processes. Teor. Veroyat. Primenen. III/4, 437–444 (1959). (in Russian)

    Google Scholar 

  3. P.L. Butzer, W. Splettstösser, R.L. Stens, The sampling theorem and linear prediction in signal analysis. Jahresber. Deutsch. Math.-Verein. 90(1), 1–70 (1988)

    MathSciNet  MATH  Google Scholar 

  4. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vol. 1 (McGraw–Hill, New York, 1953)

    MATH  Google Scholar 

  5. I.I. Gikhman, A.V. Skorokhod, Introduction to the Theory of Stochastic Processes. 2nd edn. (Nauka, Moscow, 1971). (in Russian)

    Google Scholar 

  6. J.R. Higgins, Five short stories about the cardinal series. Bull. Am. Math. Soc. (N.S.) 12(1), 45–89 (1985)

    Google Scholar 

  7. J.R. Higgins, Sampling theorem and the contour integral method. Appl. Anal. 41, 155–171 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. J.R. Higgins, Derivative sampling – a paradigm example of multichannel methods, in Sampling Theory in Fourier and Signal Analysis: Advanced Topics, ed. by J.R. Higgins, R.L. Stens (Oxford University Press, Oxford, 1999), pp. 67–95

    Google Scholar 

  9. C. Houdré, Harmonizability, V-boundedness, (2, p)-boundedness of stochastic processes. Probab. Theory Relat. Fields 84, 39–54 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Houdré, On the linear prediction of multivariate (2, p)-bounded processes. Ann. Probab. 19(2), 843–867 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Houdré, On the spectral SLLN and the pointwise ergodic theorem in L α. Ann. Probab. 20(4), 1731–1753 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Houdré, Wavelets, probability, and statistics: some bridges, in Wavelets: Mathematics and Applications, ed. by J.J. Benedetto, M.W. Frazier (CRC Press, Boca Raton, 1994), pp. 365–399

    MATH  Google Scholar 

  13. C. Houdré, Reconstruction of band limited processes form irregular samples. Ann. Probab. 23(2), 674–696 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Hurwitz, R. Courant, Allgemeine Funktionentheorie und elliptische Funktionen Geometrische Funktionentheorie (Springer, Berlin, 1922)

    Book  MATH  Google Scholar 

  15. J.A. Jerri, The Shannon sampling theorem – its various extensions and applications: a tutorial review. Proc. IEEE 65(11), 1565–1596 (1977)

    Article  MATH  Google Scholar 

  16. A. Jonquière, Note sur la série \(\sum _{n=1}^\infty \tfrac {x^n}{n^s}\). Bull. Soc. Math. France 17, 142–152 (1889)

    Google Scholar 

  17. Y. Kakihara, Multidimensional Second Order Stochastic Processes (World Scientific, Singapore, 1997)

    Book  MATH  Google Scholar 

  18. A.J. Lee, On band limited stochastic processes. SIAM J. Appl. Math. 30, 267–277 (1976)

    Article  MathSciNet  Google Scholar 

  19. A.J. Lee, Characterization of bandlimited functions and processes. Inform. Control 31, 258–271 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. A.J. Lee, Approximate interpolation and the sampling theorem. SIAM J. Appl. Math. 32, 730–743 (1977)

    Article  MathSciNet  Google Scholar 

  21. A.J. Lee, Sampling theorems for nonstationary processes. Trans Am. Math. Soc. 242, 225–241 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. D.S. Mitrinović, Analytic Inequalities. In cooperation with Vasić P. M. Die Grundlehren der mathematischen Wissenschaften, Band 165 (Springer, New York, 1970)

    Google Scholar 

  23. A.Ya. Olenko, T.K. Pogány, Direct Lagrange–Yen type interpolation of random fields. Theory Stoch. Process. 9(25)(3–4), 242–254 (2003)

    Google Scholar 

  24. A.Ya. Olenko, T.K. Pogány, A precise upper bound for the error of interpolation of stochastic processes. Theory Probab. Math. Stat. 71, 151–163 (2005)

    Google Scholar 

  25. A.Ya. Olenko, T.K. Pogány, Time shifted aliasing error upper bounds for truncated sampling cardinal series. J. Math. Anal. Appl. 324(1), 262–280 (2006)

    Google Scholar 

  26. A.Ya. Olenko, T.K. Pogány, On sharp bounds for remainders in multidimensional sampling theorem. Sampl. Theory Signal Image Process. 6(3), 249–272 (2007)

    Google Scholar 

  27. A.Ya. Olenko, T.K. Pogány, Universal truncation error upper bounds in sampling restoration. Georgian Math. J. 17, 765–786 (2010)

    Google Scholar 

  28. A.Ya. Olenko, T.K. Pogány, Universal truncation error upper bounds in irregular sampling restoration. Appl. Anal. 90(3–4), 595–608 (2010)

    Google Scholar 

  29. A.Ya. Olenko, T.K. Pogány, Average sampling reconstruction of harmonizable processes. Commun. Stat. Theory Methods 40(19–20), 3587–3598 (2011)

    Google Scholar 

  30. Z.A. Piranašvili, The problem of interpolation of random processes. Teor. Verojatnost. i Primenen. 12(4), 708–717 (1967). (in Russian)

    MathSciNet  Google Scholar 

  31. Z. Piranashvili, On the extension of Kotelnikoff–Shannon formula. Bull. Georgian Acad. Sci. 154(1), 52–54 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Z. Piranashvili, Kotelnikov-Shannon’s generalized formula for the random fields. Bull. Georgian Acad. Sci. 163(3), 448–451 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Z. Piranashvili, On the generalization of one interpolation formula. Bull. Georgian Acad. Sci. 166(2), 251–254 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Z. Piranashvili, On the generalized formula of exponentially convergent sampling. Bull. Georgian Acad. Sci. 170(1), 50–53 (2004)

    MathSciNet  Google Scholar 

  35. Z. Piranashvili, On estimation of the remainder term of the generalized sampling series. Bull. Georgian Natl. Acad. Sci. (N.S.) 3(2), 30–32 (2009)

    Google Scholar 

  36. Z.A. Piranashvili, On the generalized fast convergent sampling series. Bull. Georgian Natl. Acad. Sci. (N.S.) 5(2), 19–24 (2011)

    Google Scholar 

  37. Z. Piranashvili, Some remarks on certain sampling formulas. Bull. Georgian Natl. Acad. Sci. (N.S.) 7(3), 15–19 (2013)

    Google Scholar 

  38. Z.A. Piranashvili, T.K. Pogány, Some new generalizations of the Kotel’nikov–Shannon formula for stochastic signals, in Probability Theory and Mathematical Statistics Conference Dedicated to 100th Birth Anniversary of A. N. Kolmogorov, held September 21–27, Tbilisi, Georgia (2003). (unpublished conference talk)

    Google Scholar 

  39. T. Pogány, An approach to the sampling theorem for continuous time processes. Austral. J. Stat. 31(3), 427–432 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. T. Pogány, On the irregular-derivative sampling with uniformly dense sample points for bandlimited stochastic processes, in Exploring Stochastic Laws. Festschrift in Honour of the 70th Birthday of Academician Vladimir Semenovich Korolyuk, ed. by A.V. Skorokhod, Yu.A. Borovskikh (VSP Utrecht, The Netherlands, 1995), pp. 395–408

    Google Scholar 

  41. T. Pogány, On certain correlation properties of the sampling cardinal series expansion of stationary stochastic processes. Glasnik Mat. Ser. III 31(51), 353–362 (1996)

    MathSciNet  MATH  Google Scholar 

  42. T. Pogány, Some irregular derivative sampling theorems, in Functional Analysis, ed. by D. Butković et al., vol. IV. Proceedings of Postgraduate School and Conference. (held in Dubrovnik, Croatia, November 10–17, 1993), Matematisk Institut, Aarhus Universitet (1997), pp. 205–219

    Google Scholar 

  43. T. Pogány, Aliasing in the sampling restoration of non-band-limited homogeneous random fields. Math. Pannon. 8(1), 155–164 (1997)

    MathSciNet  MATH  Google Scholar 

  44. T. Pogány, Almost sure sampling restoration of bandlimited stochastic signals, in Sampling Theory in Fourier and Signal Analysis: Advanced Topics, ed. by J.R. Higgins, R.L. Stens (Oxford University Press, Oxford, 1999), 203–232

    Google Scholar 

  45. T. Pogány, Multidimensional Lagrange-Yen type interpolation via Kotel’nikov–Shannon sampling formulae. Ukrainian Math. J. 55(11), 1810–1827 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. T.K. Pogány, Whittaker-type derivative sampling reconstruction of stochastic L α( Ω)-processes. Appl. Math. Comput. 187(1), 384–394 (2007)

    MathSciNet  MATH  Google Scholar 

  47. T. Pogány, P. Peruničić, On the sampling theorem for homogeneous random fields. Theory Probab. Math. Stat. 53, 153–159 (1996)

    MathSciNet  MATH  Google Scholar 

  48. T. Pogány, P. Peruničić, On the multidimensional sampling theorem. Glas. Mat. Ser. III 36(56), 155–167 (2001)

    MathSciNet  MATH  Google Scholar 

  49. M. Priestley, Non-linear and Non-stationary Time Series (Academic Press, New York, 1988)

    Google Scholar 

  50. M.M. Rao, Harmonizable processes: structure theory. Enseign. Math. (2) 28(3–4), 295–351 (1982)

    Google Scholar 

  51. Ju.A. Rozanov, Spectral analysis of abstract functions. Theor. Probab. Appl. 4(3), 271–287 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  52. A.M. Yaglom, in Correlation Theory of Stationary and Related Random Functions I. Basic Results. Springer Series in Statistics (Springer, New York, 1987)

    Google Scholar 

  53. A.M. Yaglom, in Correlation Theory of Stationary and Related Random Functions II. Supplementary Notes and References. Springer Series in Statistics (Springer, New York, 1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor K. Pogány .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piranashvili, Z.A., Pogány, T.K. (2019). On Generalized Derivative Sampling Series Expansion. In: Dutta, H., Kočinac, L.D.R., Srivastava, H.M. (eds) Current Trends in Mathematical Analysis and Its Interdisciplinary Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-15242-0_14

Download citation

Publish with us

Policies and ethics