Skip to main content

Mycorrhizas in the South American Mediterranean-Type Ecosystem: Chilean Matorral

  • Chapter
  • First Online:
Mycorrhizal Fungi in South America

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

One of the most important microorganisms in the soil are the mycorrhizal fungi; however, little research exists regarding mycorrhizal symbiosis on the South American Mediterranean-type ecosystem (MTE) – also commonly known as Chilean matorral. The aims of this chapter are to highlight and compile the existing and arising knowledge on mycorrhizal symbiosis of the Chilean MTE, as well as detect knowledge gaps and propose future directions of research. So far, the mycorrhizal type of some plant species of the Chilean matorral is known. Regarding arbuscular mycorrhizal symbiosis, there are few investigations on mycorrhizal ecology and applied research with agricultural purposes and more is in development. Some ectomycorrhizal and orchid mycorrhizal symbiosis research is available on ecological concerns about biodiversity patterns with applied potential for conservation. The lack of studies on ericoid mycorrhiza was detected. Finally, in spite of the ecological diversity studies carried on the mycorrhiza from the Chilean MTE, further studies quantifying the mycorrhizal contribution should be performed so as to be applied on conservation and sustainable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcaras C (2010) Caracterización de una población de Nothofagus macrocarpa (A.DC.) Vasq. & Rodr., en sector Granizo del Parque Nacional La Campana. Trabajo de Titulación. Universidad Austral de Chile

    Google Scholar 

  • Álvarez-Garrido L, Hortal S, Viñegla B, Carreira de la Fuente JA (2017) Plant-soil interactions as modulatory mechanism of adaptive capacity to global change in relict conifer forests. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

  • Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145:367–421. https://doi.org/10.1046/j.1469-8137.2000.00587.x

    Article  Google Scholar 

  • Arista A, Arroyo J, Berjano R, Jiménez-Lobato V, Jiménez-López J, Lloret F, López-Jurado J, Márquez-Corro JI, Olmedo-Vicente E, Rodríguez-Castaneda NL, Sánchez M, Simón-Porcar VI, Vilà M, Picó FX (2017) Present and future of ecological and evolutionary research in Mediterranean-type ecosystems: Conclusions from the last International Mediterranean Ecosystems Conference. Am J Bot 104:1777–1782. https://doi.org/10.3732/ajb.1700367

    Article  Google Scholar 

  • Armesto J, Arroyo M, Hinojosa L (2007) The Mediterranean environment of central Chile. In: Veblen TT, Young KR, Orme AR (eds) The physical geography of South America. Oxford University Press, Inc., New York, p 184–199

    Google Scholar 

  • Batty AL, Dixon KW, Brundrett MC, Sivasithamparam K (2002) Orchid conservation and mycorrhizal associations. In: Sivasithamparam K, Dixon KW, Barrett RL (eds) Microorganisms in Plant Conservation and Biodiversity. Kluwer Academic Publishers, Dordrecht, p 195–226

    Google Scholar 

  • Benedetti S, Balocchi F, Hormazábal M (2018) Arbuscular mycorrhizal fungi (AMF) linked to Peumus boldus natural formation in Central Chile. Gayana Bot 75:431–437

    Article  Google Scholar 

  • Benito Matías LF, Álvarez Lafuente A, Peñuelas JL (2017) Tuber melanosporum improves freezing tolerance in Quercus faginea and Q. ilex seedlings. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

  • Benoit IL (1989) Libro Rojo de la Flora Terrestre de Chile (Primera Parte). CONAF, Santiago de Chile

    Google Scholar 

  • Bernhardt P (1995) Biogeography and Floral Evolution in the Geoblasteae (Orchidaceae). In: Arroyo MTK, Zedler PH, Fox MD (eds) Ecology and Biogeography of Mediterranean Ecosystems in Chile, California, and Australia. Springer, New York, p 116–134

    Chapter  Google Scholar 

  • Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61. https://doi.org/10.1016/j.mycres.2006.11.006

    Article  Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. https://doi.org/10.1111/nph.14976

    Article  Google Scholar 

  • Bueno CG, Marín C, Silva-Flores P, Aguilera P, Godoy R (2017) Think globally, research locally: emerging opportunities for mycorrhizal research in South America. New Phytol 215:1306–1309. https://doi.org/10.1111/nph.14709

    Article  Google Scholar 

  • Bueno CG, Gerz M, Zobel M, Moora M (2018) Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. Mycorrhiza. https://doi.org/10.1007/s00572-018-0869-1

    Article  Google Scholar 

  • Calviño-Cancela M, Santolamazza S, Durán M, Neumann M (2017) On the ecological integration of Eucalyptus globulus in NW Spain: new pollination and mycorrhizal interactions with local birds and fungi. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

  • Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: Evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416. doi: https://doi.org/10.1111/j.1469-8137.2006.01767.x

    Article  CAS  PubMed  Google Scholar 

  • Casanova-Katny MA, Torres-Mellado GA, Palfner G, Cavieres LA (2011) The best for the guest: high Andean nurse cushions of Azorella madreporica enhance arbuscular mycorrhizal status in associated plant species. Mycorrhiza 21:613–622. https://doi.org/10.1007/s00572-011-0367-1

    Article  Google Scholar 

  • Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in mediterranean-climate regions. Trends Ecol Evol 11:362–366. https://doi.org/10.1016/0169-5347(96)10044-6

    Article  CAS  Google Scholar 

  • Curaqueo G, Acevedo E, Cornejo P, Seguel A, Rubio R, Borie F (2010) Tillage effect on soil organic matter, mycorrhizal hyphae and aggregates in a Mediterranean agroecosystem. Rev la Cienc del suelo y Nutr Veg 10:12–21. https://doi.org/10.4067/S0718-27912010000100002

    Google Scholar 

  • Curaqueo G, Barea JM, Acevedo E, Rubio R, Cornejo P, Borie F (2011) Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in central Chile. Soil Tillage Res 113:11–18. https://doi.org/10.1016/j.still.2011.02.004

    Article  Google Scholar 

  • Dallman PR (1998) Plant Life in the World’s Mediterranean Climates: California, Chile, South Africa, Australia, and the Mediterranean Basin. University of California Press Books, Berkeley

    Google Scholar 

  • Dearnaley JDW, Martos F, Selosse M (2012) Orchid Mycorrhizas: Molecular Ecology, Physiology, Evolution and Conservation Aspects. In: Fungal Associations. Springer Berlin Heidelberg, Berlin, Heidelberg, p 207–230

    Chapter  Google Scholar 

  • Dias T, Liberati D, Munzi S, Gouveia C, Ulm F, Afonso AC, Ochoa-Hueso R, Manrique E, Sheppard L, Martins-Loução MA, Bernardes da Silva A, Cruz C (2017) Ecological independence and self-reliance of the dominant plant species loosen ecosystem integration: evidence from 7 years’ of changing patterns of nitrogen pulses in a Mediterranean Basin shrubland. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

  • Dressler R (1981) The orchids: natural history and classification. Harvard University Press, Cambridge

    Google Scholar 

  • Fracchia S, Aranda-Rickert A, Flachsland E, Terada G, Sede S (2014a) Mycorrhizal compatibility and symbiotic reproduction of Gavilea australis, an endangered terrestrial orchid from south Patagonia. Mycorrhiza 24:627–634. https://doi.org/10.1007/s00572-014-0579-2

    Article  Google Scholar 

  • Fracchia S, Silvani V, Flachsland E, Terada G, Sede S (2014b) Symbiotic seed germination and protocorm development of Aa achalensis Schltr., a terrestrial orchid endemic from Argentina. Mycorrhiza 24:35–43. https://doi.org/10.1007/s00572-013-0510-2

    Article  Google Scholar 

  • Garrido N (1985) Index Agaricalium Chilensium. J. Cramer, Vaduz

    Google Scholar 

  • Garrido N (1988) Agaricales s.l. und ihre Mykorrhizen in den Nothofagus-Wäldern Mittelchiles. Schweizerbart Science Publishers, Stuttgart, Germany

    Google Scholar 

  • Gebauer G, Preiss K, Gebauer AC (2016) Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytol 211:11–15. https://doi.org/10.1111/nph.13865

    Article  Google Scholar 

  • Gil-Martínez M, López-García Á, Navarro-Fernández CM, et al. (2017) Understanding feedback processes between holm oak (Quercus ilex) and their ectomycorrhizal fungal symbionts in trace-element polluted soils in Mediterranean ecosystems. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

  • Girlanda M, Segreto R, Cafasso D, Liebel HT, Rodda M, Ercole E, Cozzolino S, Gebauer G, Perotto S (2011) Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am J Bot 98:1148–1163. https://doi.org/10.3732/ajb.1000486

    Article  Google Scholar 

  • Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, Doucette A, Caro GG, McDaniel J, Clements MA, Arroyo MK, Endara L, Kriebel R, Williams NH, Cameron KM (2016) Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal. J Biogeogr 43:1905–1916. https://doi.org/10.1111/jbi.12854

    Article  Google Scholar 

  • Harris J (2009) Soil Microbial Communities and Restoration Ecology: Facilitators or Followers? Science 325:573–574. https://doi.org/10.1126/science.1172975

    Article  CAS  Google Scholar 

  • Hernández-Rodríguez M, Mediavilla O, Oria-de-Rueda J, Martín-Pinto P (2017) Ecology of fungal communities after fire in Mediterranean systems dominated by Cistus ladanifer L. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

  • Herrera H, Valadares R, Contreras D, Bashan Y, Arriagada C (2017) Mycorrhizal compatibility and symbiotic seed germination of orchids from the Coastal Range and Andes in south central Chile. Mycorrhiza 27:175–188. https://doi.org/10.1007/s00572-016-0733-0

    Article  CAS  Google Scholar 

  • Herrera H, García-Romera I, Meneses C, Pereira G, Arriagada C (2019) Orchid Mycorrhizal Interactions on the Pacific Side of the Andes from Chile. A Review. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-019-00026-x

  • Horak E (1980) Agaricales y gasteromicetes secotioides. In: Flora Criptogámica de Tierra del Fuego, tomo XI, fascículo 6: Fungi, Basidiomycetes. FECYC, Buenos Aires

    Google Scholar 

  • Hynson N, Madsen T, Selosse M, Adam IKU, Ogura-Tsujita Y, Roy M, Gebauer G (2013) The physiological ecology of mycoheterotrophic plants. In: Merckx V (ed) Mycoheterotrophy: the biology of plants living on fungi. Springer, New York, p 297–342

    Chapter  Google Scholar 

  • Jacquemyn H, Brys R, Waud M, Busschaert P, Lievens B (2015) Mycorrhizal networks and coexistence in species-rich orchid communities. New Phytol 206:1127–1134. https://doi.org/10.1111/nph.13281

    Article  CAS  Google Scholar 

  • Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–1173. https://doi.org/10.1126/science.aam9970

    Article  CAS  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13. https://doi.org/10.1016/j.femsec.2003.11.012

    Article  CAS  Google Scholar 

  • Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux PM, Klingl V, von Röpenack-Lahaye E, Wang TL, Eisenreich W, Dörmann P, Parniske M, Gutjahr C (2017) Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife 6:1–33. https://doi.org/10.7554/eLife.29107

    Article  Google Scholar 

  • Leake J (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216. https://doi.org/10.1111/j.1469-8137.1994.tb04272.x

    Article  Google Scholar 

  • Liebel HT, Bidartondo MI, Preiss K, Segreto R, Stöckel M, Rodda M, Gebauer G (2010) C and N stable isotope signatures reveal constraints to nutritional modes in orchids from the Mediterranean and Macaronesia. Am J Bot 97:903–12. https://doi.org/10.3732/ajb.0900354

    Article  CAS  Google Scholar 

  • López García A, Gil-Martínez M, Navarro-Fernández CM, Azcón-Aguilar C, Domínguez MT, Marañón T (2017) Assessment of the recovery of functional diversity of ectomycorrhizal fungal communities in metal polluted soils. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

  • Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175–1178. https://doi.org/10.1126/science.aan0081

    Article  CAS  Google Scholar 

  • Marañón T, Domínguez M, Madejón P, Navarro-Fernández CM, Gil-Martínez M, López-García Á, Murillo JM (2017) Soil functioning and ecosystem services: using trees to remediate contaminated soils. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

  • Marín C, Aguilera P, Oehl F, Godoy R (2017) Factors affecting arbuscular mycorrhizal fungi of Chilean temperate rainforests. J soil Sci plant Nutr 17, 966–984. https://doi.org/10.4067/S0718-95162017000400010

    Article  Google Scholar 

  • Mediavilla O, Oria de Rueda JA, Martín-Pinto P (2017) Diversity of fungal communities after a wildfire in Mediterranean pine forest is linked to vegetation replacement. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

  • Moora M (2014) Mycorrhizal traits and plant communities: Perspectives for integration. J Veg Sci 25:1126–1132. https://doi.org/10.1111/jvs.12177

    Article  Google Scholar 

  • Moser M, Horak E (1975) Cortinarius und nahe verwandte Gattungen in Südamerika. Beihefte zur Nov Hedwigia 52:1–628

    Google Scholar 

  • Mujica MI, Saez N, Cisternas M, Manzano M, Armesto JJ, Pérez F (2016) Relationship between soil nutrients and mycorrhizal associations of two Bipinnula species (Orchidaceae) from central Chile. Ann Bot 118:149–158. https://doi.org/10.1093/aob/mcw082

    Article  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    Article  CAS  Google Scholar 

  • Navarro-Fernández CM, Pérez-Ramos IM, G. de la Riva E, Vera J, Roumet C, Villar R, Marañón T (2017) A functional approach to explore the drivers of mycorrhizal trait variability in Mediterranean plant communities. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

  • Neuenkamp L, Moora M, Öpik M, Davison J, Gerz M, Männistö M, Jairus T, Vasar M, Zobel M (2018) The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities. New Phytol https://doi.org/10.1111/nph.14995

    Article  CAS  Google Scholar 

  • Niveiro N, Albertó E (2012) Checklist of the Argentine Agaricales I. Amanitaceae, Pluteaceae and Hygrophoraceae. Mycotaxon 119:493–494. https://doi.org/10.5248/119.493

    Article  Google Scholar 

  • Niveiro N, Albertó E (2013) Checklist of the Argentinean Agaricales 6. Paxillaceae, Gomphidiaceae, Boletaceae and Russulaceae. Mycotaxon 123:1–8

    Google Scholar 

  • Niveiro N, Albertó E (2014) Checklist of the Argentine Agaricales 7. Cortinariaceae and Entolomataceae. Check List 10:72–96

    Article  Google Scholar 

  • Novoa P, Espejo J, Alarcon D, Cisternas M, Domínguez E (2015) Guía de campo de las orquídeas chilenas. Corporación Chilena de la Madera, Concepción

    Google Scholar 

  • Parker I, Grove S, Haubensak KA (2017) Biotic and abiotic impacts of invasive nitrogen-fixing shrubs in the Pacific Northwest of the United States. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

  • Pérez-Izquierdo L, Zabal-Aguirre M, González-Martínez S, Verdú M, Buée M, Rincón A (2017) Fire recurrence impacts the functioning and phylogenetic structure of fungal communities in Mediterranean pine forests. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163. https://doi.org/10.1023/A:1020246715436

    Article  CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47: 376–391

    Article  Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J (2004): Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82: 1243–1263 https://doi.org/10.1139/B04-123

    Article  CAS  Google Scholar 

  • Read DJ, Perez-Moreno J (2003): Mycorrhizas and nutrient cycling in ecosystems - A journey towards relevance? New Phytol 157: 475–492. https://doi.org/10.1046/j.1469-8137.2003.00704.x

    Article  Google Scholar 

  • Rincón Herranz A, Zabal-Aguirre M, Flores-Renteria D, González-Martínez SC, Buée M, Pérez-Izquierdo L (2017) Structural and functional responses of fungal communities to biotic and abiotic factors in Mediterranean pine forests. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

  • Romano G, Greslebin A, Lechner BE (2017) Hongos agaricoides de los bosques de Nothofagus pumilio (Chubut, Argerntina): Clave y listado de especies. Rev del Mus Argentino Ciencias Nat Nueva Ser 19:36–69. https://doi.org/10.22179/REVMACN.18.495

    Google Scholar 

  • Romano G, Lechner BE (2013) The Cortinariaceae of Argentina’ s Nothofagus forests. Mycotaxon 126: 1–35. https://doi.org/10.5248/126.247

    Article  Google Scholar 

  • Romero Munar A, Gulías J, Baraza E (2017) Ecophysiological impact of arbuscular mycorrhiza inoculation on Arundo donax, a promising biomass crop. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

  • Rundel PW, Cowling RM (2013) Mediterranean-Climate Ecosystems. In: Levin S (ed) Encyclopedia of Biodiversity: Second Edition, Waltham, MA: Academic, p 212–222

    Chapter  Google Scholar 

  • Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70. https://doi.org/10.1016/j.tplants.2008.11.004

    Article  CAS  Google Scholar 

  • Silva-Flores P, Oses I, Almada R, Molina-Montenegro MM, Palfner G (submitted) Mycorrhizal type of dominant trees in the sclerophyllous shrubland of the Mediterranean Chilean Matorral. J Soil Sci Plant Nutr

    Google Scholar 

  • Silva-Flores P, Bueno CG, Neira J, Palfner G (2019) Physico-chemical soil factors and seasonality regulate spore bank density of Arbuscular Mycorrhizal Fungi in two sclerophyllous shrublands of the Mediterranean Chilean matorral. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-018-0004-6

  • Singer R (1969) Mycoflora Australis. Nov Hedwigia Beihefte 576

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier Ltd

    Google Scholar 

  • Steinfort U, Verdugo G, Besoain X, Cisternas MA (2010) Mycorrhizal association and symbiotic germination of the terrestrial orchid Bipinnula fimbriata (Poepp.) Johnst (Orchidaceae). Flora Morphol Distrib Funct Ecol Plants 205:811–817. https://doi.org/10.1016/j.flora.2010.01.005

    Article  Google Scholar 

  • Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556. https://doi.org/10.1093/aob/mcp025

    Article  Google Scholar 

  • Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Koljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490. https://doi.org/10.1111/j.1469-8137.2008.02561.x

    Article  CAS  Google Scholar 

  • Torres-Mellado G, Escobar I, Palfner G, Casanova-Katny M (2012) Mycotrophy in Gilliesieae, a threatened and poorly known tribe of Alliaceae from central Chile. Rev Chil Hist Nat 85:179–186. https://doi.org/10.4067/S0716-078X2012000200004

    Article  Google Scholar 

  • Underwood EC, Viers JH, Klausmeyer KR, Cox RL, Shaw MR (2009) Threats and biodiversity in the mediterranean biome. Divers Distrib 15:188–197. https://doi.org/10.1111/j.1472-4642.2008.00518.x

    Article  Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. https://doi.org/10.1111/nph.13288

    Article  Google Scholar 

  • Verdú M (2017) Plant facilitation and phylogenetics. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266

    Google Scholar 

Download references

Acknowledgements

Patricia Silva-Flores was funded by the National Doctorate Grant N° 21140639 of CONICYT and CONICYT Regional/CEAF/R08I1001. P.S.F. also thanks the support of the Roberto Godoy regular FONDECYT 1190642. Ana Aguilar was funded by the National Doctorate Grant N° 21120047 and N° 81150505 of CONICYT and VI Scientific Research Fund of Pacific Hydro SA. A.A. also thanks the support of the regular postdoctoral 2018 grant of the Pontificia Universidad Católica de Valparaíso. María José Dibán was funded by Luis Felipe Hinojosa FONDECYT 1150690 and AFB170008. M.J.D also thanks to Dr. Götz Palfner, co-supervisor of Master Thesis, specifically in guiding taxonomic identification of some species. María Isabel Mujica thanks to CONICYT for the National Doctorate Grant N° 21151009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Silva-Flores .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva-Flores, P., Aguilar, A., Dibán, M.J., Mujica, M.I. (2019). Mycorrhizas in the South American Mediterranean-Type Ecosystem: Chilean Matorral. In: Pagano, M., Lugo, M. (eds) Mycorrhizal Fungi in South America. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-15228-4_14

Download citation

Publish with us

Policies and ethics