Skip to main content

Use of Robotic-Assisted Surgery in Orthopedics

  • Chapter
  • First Online:
General Principles of Orthopedics and Trauma

Abstract

Robotic surgery in the field of trauma and orthopedics is an emerging science. Currently only a handful of centers are using robotic surgery worldwide, although in other specialties such as urology and gynecology, robots are used much more commonly. Robotic surgery is associated with precision bone cuts and optimum positioning of implants. This has the potential of improving recovery times and patient outcomes. There are two main types of robotic surgery: Haptic and autonomous systems. Haptic computers are used more commonly in orthopedics. Currently robotic surgery is used mainly in joint reconstruction and spine surgery. This chapter outlines the current use of robotic surgery in trauma and orthopedics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lonner JH. Robotically assisted unicompartmental knee arthroplasty with a handheld image-free sculpting tool. Orthop Clin North Am. 2016;47(1):29–40.

    Article  PubMed  Google Scholar 

  2. Bargar WL. Robots in orthopaedic surgery: past, present, and future. Clin Orthop Relat Res. 2007;463:31–6.

    PubMed  Google Scholar 

  3. Specht LM, Koval KJ. Robotics and computer-assisted orthopaedic surgery. Bull Hosp Jt Dis. 2001;60(3-4):168–72.

    PubMed  Google Scholar 

  4. Karthik K, Colegate-Stone T, Dasgupta P, Tavakkolizadeh A, Sinha J. Robotic surgery in trauma and orthopaedics: a systematic review. Bone Joint J. 2015;97b(3):292–9.

    Article  Google Scholar 

  5. Davies PBL. Orthopaedic robotic surgery. J Trauma Orthop. 2017;05(03):2.

    Google Scholar 

  6. Lang JE, Mannava S, Floyd AJ, Goddard MS, Smith BP, Mofidi A, et al. Robotic systems in orthopaedic surgery. J Bone Joint Surg Br. 2011;93(10):1296–9.

    Article  CAS  PubMed  Google Scholar 

  7. Cobb J, Henckel J, Gomes P, Harris S, Jakopec M, Rodriguez F, et al. Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system. J Bone Joint Surg. 2006;88(2):188–97.

    Article  CAS  Google Scholar 

  8. Swank ML, Alkire M, Conditt M, Lonner JH. Technology and cost-effectiveness in knee arthroplasty: computer navigation and robotics. Am J Orthop (Belle Mead NJ). 2009;38(2 Suppl):32–6.

    Google Scholar 

  9. Blyth MJG, Anthony I, Rowe P, Banger MS, MacLean A, Jones B. Robotic arm-assisted versus conventional unicompartmental knee arthroplasty: exploratory secondary analysis of a randomised controlled trial. Bone Joint Res. 2017;6(11):631–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim SM, Park YS, Ha CW, Lim SJ, Moon YW. Robot-assisted implantation improves the precision of component position in minimally invasive TKA. Orthopedics. 2012;35(9):e1334–9.

    Article  PubMed  Google Scholar 

  11. Song EK, Seon JK, Yim JH, Netravali NA, Bargar WL. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res. 2013;471(1):118–26.

    Article  PubMed  Google Scholar 

  12. Park SE, Lee CT. Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty. J Arthroplast. 2007;22(7):1054–9.

    Article  Google Scholar 

  13. Davenport D, Kavarthapu V. Computer navigation of the acetabular component in total hip arthroplasty: a narrative review. EFORT Open Rev. 2016;1(7):279–85.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Domb BG, El Bitar YF, Sadik AY, Stake CE, Botser IB. Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study. Clin Orthop Relat Res. 2014;472(1):329–36.

    Article  PubMed  Google Scholar 

  15. Domb BG, Redmond JM, Louis SS, Alden KJ, Daley RJ, LaReau JM, et al. Accuracy of component positioning in 1980 total hip arthroplasties: a comparative analysis by surgical technique and mode of guidance. J Arthroplast. 2015;30(12):2208–18.

    Article  Google Scholar 

  16. Nishihara S, Sugano N, Nishii T, Miki H, Nakamura N, Yoshikawa H. Comparison between hand rasping and robotic milling for stem implantation in cementless total hip arthroplasty. J Arthroplast. 2006;21(7):957–66.

    Article  Google Scholar 

  17. Schulz AP, Seide K, Queitsch C, von Haugwitz A, Meiners J, Kienast B, et al. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot. 2007;3(4):301–6.

    Article  PubMed  Google Scholar 

  18. Isik C, Apaydin N, Acar HI, Cay N, Firat A, Bozkurt M. Robotic hip arthroscopy: a cadaveric feasibility study. Acta Orthop Traumatol Turc. 2014;48(2):207–11.

    Article  PubMed  Google Scholar 

  19. Shaw KA, Murphy JS, Devito DP. Accuracy of robot-assisted pedicle screw insertion in adolescent idiopathic scoliosis: is triggered electromyographic pedicle screw stimulation necessary? J Spine Surg. 2018;4(2):187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Macke JJ, Woo R, Varich L. Accuracy of robot-assisted pedicle screw placement for adolescent idiopathic scoliosis in the pediatric population. J Robot Surg. 2016;10(2):145–50.

    Article  PubMed  Google Scholar 

  21. van Dijk JD, van den Ende RP, Stramigioli S, Kochling M, Hoss N. Clinical pedicle screw accuracy and deviation from planning in robot-guided spine surgery: robot-guided pedicle screw accuracy. Spine. 2015;40(17):E986–91.

    Article  PubMed  Google Scholar 

  22. Bozkurt M, Apaydin N, Isik C, Bilgetekin YG, Acar HI, Elhan A. Robotic arthroscopic surgery: a new challenge in arthroscopic surgery Part-I: robotic shoulder arthroscopy; a cadaveric feasibility study. Int J Med Robot. 2011;7(4):496–500.

    Article  PubMed  Google Scholar 

  23. Facca S, Hendriks S, Mantovani G, Selber JC, Liverneaux P. Robot-assisted surgery of the shoulder girdle and brachial plexus. Semin Plast Surg. 2014;28(1):39–44.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, J., Al-Tawil, K., Khan, W.S. (2019). Use of Robotic-Assisted Surgery in Orthopedics. In: Iyer, K., Khan, W. (eds) General Principles of Orthopedics and Trauma. Springer, Cham. https://doi.org/10.1007/978-3-030-15089-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15089-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15088-4

  • Online ISBN: 978-3-030-15089-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics