Skip to main content

Minimizing Daily Cost and Maximizing User Comfort Using a New Metaheuristic Technique

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 927))

Abstract

A home energy management system intended to improve the energy consumption pattern in a smart home is proposed in this research. The objective of this work is to handle the load need in an adequate manner such that, electrical energy cost and waiting time is minimized where Peak to Average Ratio (PAR) is maintained through coordination among appliances. The proposed scheme performance is assessed for PAR, user comfort and cost. This work assess the behavior of advised plan for real-time pricing and critical peak pricing schemes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. U.S. Energy Information Administration, Annual Energy Outlook 2018, p. 121, 122, Residential and commercial energy consumption grows gradually from 2017 to 2050. https://www.eia.gov/outlooks/aeo/pdf/AEO2018.pdf. Accessed October 2018

  2. Luo, F., Ranzi, G., Wan, C., Xu, Z., Dong, Z.Y.: A multi-stage home energy management system with residential photovoltaic penetration. IEEE Trans. Ind. Inf., 11 (2018)

    Google Scholar 

  3. Strbac, G.: Demand side management: benefits and challenges. Energy Policy 36, 4419–4426 (2008). Energies 11, 1426 (2018)

    Article  Google Scholar 

  4. Gellings, C.W.: The concept of demand-side management for electric utilities. Proc. IEEE 73(10), 1468–1470 (1985)

    Article  Google Scholar 

  5. Baharlouei, Z., Hashemi, M.: Demand side management challenges in smart grid: a review. In: Proceedings Smart Grid Conference (SGC), pp. 96–101, December 2013

    Google Scholar 

  6. Huang, Y., Wang, L., Guo, W., Kang, Q., Wu, Q.: Chance constrained optimization in a home energy management system. IEEE Trans. Smart Grid 9(1), 252–260 (2018)

    Article  Google Scholar 

  7. Hansen, T.M., Chong, E.K.P., Suryanarayanan, S., Maciejewski, A.A., Siegel, H.J.: A partially observable markov decision process approach to residential home energy management. IEEE Trans. Smart Grid 9(2), 1271–1281 (2018)

    Article  Google Scholar 

  8. Luo, F., Ranzi, G., Kong, W., Dong, Z.Y., Wang, F.: Coordinated residential energy resource scheduling with vehicle-to-home and high photovoltaic penetrations. IET Renew. Power Gener. 12(6), 625–632 (2018)

    Article  Google Scholar 

  9. Luo, F., Dong, Z.Y., Xu, Z., Kong, W., Wang, F.: Distributed residential energy resource scheduling with renewable uncertainties. IET Gener. Transm. Distrib. 12(11), 2770–2777 (2018)

    Article  Google Scholar 

  10. Elghitani, F., Zhuang, W.: Aggregating a large number of residential appliances for demand response applications. IEEE Trans. Smart Grid 9(5), 5092–5100 (2018)

    Article  Google Scholar 

  11. Tushar, M.H.K., Zeineddine, A.W., Assi, C.: Demand-side management by regulating charging and discharging of the EV, ESS, and utilizing renewable energy. IEEE Trans. Ind. Inf. 14(1), 117–126 (2018)

    Article  Google Scholar 

  12. Wu, X., Hu, X., Yin, X., Moura, S.J.: Stochastic optimal energy management of smart home with PEV energy storage. IEEE Trans. Smart Grid 9(3), 2065–2075 (2018)

    Article  Google Scholar 

  13. Moon, J., Kim, K.-H., Kim, Y., Hwang, E.: A short-term electric load forecasting scheme using 2-stage predictive analytics. In: 2018 IEEE International Conference on Big Data and Smart Computing (2018)

    Google Scholar 

  14. Keles, D., Scelle, J., Paraschiv, F.: Wolf Fichtner Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. Appl. Energy 162, 218–230 (2016)

    Article  Google Scholar 

  15. Ghofrani, M., Hassanzadeh, M., Etezadi-Amoli, M., Fadali, M.: Smart meter based short-term load forecasting for residential customers. In: North American Power Symposium (NAPS), pp. 1–5, August 2011

    Google Scholar 

  16. Huang, H., Cai, Y., Xu, H., Yu, H.: A multi-agent minority-game- based demand-response management of smart buildings towards peak load reduction. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 36(4), 573–585 (2017)

    Article  Google Scholar 

  17. Ruelens, F., Claessens, B.J., Vandael, S., Schutter, B.D., Babuška, R., Belmans, R.: Residential demand response of thermostatically controlled loads using batch reinforcement learning. IEEE Trans. Smart Grid 8(5), 2149–2159 (2017)

    Article  Google Scholar 

  18. Pourmousavi, S.A., Patrick, S.N., Nehrir, M.H.: Real-time demand response through aggregate electric water heaters for load shifting and balancing wind generation. IEEE Trans. Smart Grid 5(2), 769–778 (2014)

    Article  Google Scholar 

  19. Jindal, A., Dua, A., Kaur, K., Singh, M., Kumar, N., Mishra, S.: Decision tree and SVM-based data analytics for theft detection in smart grid. IEEE Trans. Ind. Informat. 12(3), 1005–1016 (2016)

    Article  Google Scholar 

  20. Mirowski, P., Chen, S., Ho, T.K., Yu, C.-N.: Demand forecasting in smart grids. Bell Labs Tech. J. 18(4), 135–158 (2014)

    Article  Google Scholar 

  21. Wijaya, T.K., Vasirani, M., Humeau, S., Aberer, K.: Cluster-based aggregate forecasting for residential electricity demand using smart meter data. In: IEEE International Conference on Big Data (Big Data)

    Google Scholar 

  22. Yang, J., Liu, J., Fang, Z., Liu, W.: Electricity scheduling strategy for home energy management system with renewable energy and battery storage: a case study. IET Renew. Power Gener. 12(6), 639–648 (2018)

    Article  Google Scholar 

  23. Merrikh-Bayat, F.: A numerical optimization algorithm inspired by the strawberry plant, arXiv preprint arXiv:1407.7399 (2014)

  24. Waterloo North Hydro Inc. Residential Charges and Rates. Accessed 20 May 2016. https://www.wnhydro.com/en/yourhome/time-of-use-rates.asp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeem Javaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abbasi, R.A. et al. (2019). Minimizing Daily Cost and Maximizing User Comfort Using a New Metaheuristic Technique. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2019. Advances in Intelligent Systems and Computing, vol 927. Springer, Cham. https://doi.org/10.1007/978-3-030-15035-8_8

Download citation

Publish with us

Policies and ethics