Skip to main content

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 725 Accesses

Abstract

During the last two decades, significant progress has been accomplished in the development of optical fibers for the generation of ultrabroadband high-brightness spectra through supercontinuum (SC) generation, see e.g., [1]. The nonlinear propagation dynamics of the optical pulse in a fiber is essentially one-dimensional since single-mode propagation over broad wavelength ranges is desired to ensure good guidance properties and high nonlinearity over extended lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)

    Article  ADS  Google Scholar 

  2. Alfano, R.R., Shapiro, L.: Emission in the region 4000 to 7000 Å via four photon coupling in glass. Phys. Rev. Lett. 24, 584–587 (1970)

    Article  ADS  Google Scholar 

  3. Alfano, R.R., Shapiro, L.: Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594 (1970)

    Article  ADS  Google Scholar 

  4. Chin, S.L., Hosseini, S.A., Liu, W., Luo, Q., Thberge, F., Aközbek, N., Becker, A., Kandidov, V.P., Kosareva, O.G., Schroeder, H.: The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges. Can. J. Phys. 83, 863–905 (2005)

    Article  ADS  Google Scholar 

  5. Couairon, A., Mysyrowicz, A.: Femtoseconmd filamentation in transparent media. Phys. Rep. 441, 47–190 (2007)

    Article  ADS  Google Scholar 

  6. Kandidov, V.P., Shlenov, S.A., Kosareva, O.G.: Filamentation of high-power femtosecond laser radiation. Quantum Electron. 39, 205–228 (2009)

    Article  ADS  Google Scholar 

  7. Braun, A., Korn, G., Liu, X., Du, D., Squier, J., Mourou, G.: Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 73–75 (1995)

    Article  ADS  Google Scholar 

  8. Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985)

    Article  ADS  Google Scholar 

  9. Chiao, R.Y., Garmire, E., Townes, C.H.: Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1964)

    Article  ADS  Google Scholar 

  10. Porras, M.A., Parola, A., Faccio, D., Couairon, A., Di Trapani, P.: Light-filament dynamics and the spatiotemporal instability of the townes profile. Phys. Rev. A 76, 011803(R) (2007)

    Article  ADS  Google Scholar 

  11. Marburger, J.H.: Self-focusing: theory. Prog. Quantum Electron. 4, 35–110 (1975)

    Article  ADS  Google Scholar 

  12. Dawes, E.L., Marburger, J.H.: Computer studies in self-focusing. Phys. Rev. 179, 862–868 (1969)

    Article  ADS  Google Scholar 

  13. Dubietis, A., Couairon, A., Kučinskas, E., Tamošauskas, G., Gaižauskas, E., Faccio, D., Di Trapani, P.: Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water. Appl. Phys. B 84, 439–446 (2006)

    Article  ADS  Google Scholar 

  14. Kasparian, J., Sauerbrey, R., Chin, S.L.: The critical laser intensity of self-guided light filaments in air. Appl. Phys. B 71, 877–879 (2000)

    Article  ADS  Google Scholar 

  15. Brodeur, A., Chin, S.L.: Band-gap dependence of the ultrafast white-light continuum. Phys. Rev. Lett. 80, 4406–4409 (1998)

    Article  ADS  Google Scholar 

  16. Brodeur, A., Chin, S.L.: Ultrafast white-light continuum generation and self-focusing in transparent condensed media. J. Opt. Soc. Am. B 16, 637–650 (1999)

    Article  ADS  Google Scholar 

  17. Sheik-Bahae, M., Hagan, D.J., Van Stryland, E.W.: Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett. 65, 96–99 (1990)

    Article  ADS  Google Scholar 

  18. Šiaulys, N., Melninkaitis, A., Dubietis, A.: In situ study of two interacting femtosecond filaments in sapphire. Opt. Lett. 40, 2285–2288 (2015)

    Article  ADS  Google Scholar 

  19. Mlejnek, M., Wright, E.M., Moloney, J.V.: Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt. Lett. 23, 382–384 (1998)

    Article  ADS  Google Scholar 

  20. Kiran, P.P., Bagchi, S., Arnold, C.L., Krishnan, S.R., Kumar, G.R., Couairon, A.: Filamentation without intensity clamping. Opt. Express 18, 21504–21510 (2010)

    Article  ADS  Google Scholar 

  21. Liu, W., Petit, S., Becker, A., Aközbek, N., Bowden, C.M., Chin, S.L.: Intensity clamping of a femtosecond laser pulse in condensed matter. Opt. Commun. 202, 189–197 (2002)

    Article  ADS  Google Scholar 

  22. Weber, M.J.: Handbook of Optical Materials. CRC Press, London (2003)

    Google Scholar 

  23. https://refractiveindex.info/

  24. Kolesik, M., Katona, G., Moloney, J.V., Wright, E.M.: Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation. Phys. Rev. Lett. 91, 043905 (2003)

    Article  ADS  Google Scholar 

  25. Kolesik, M., Katona, G., Moloney, J.V., Wright, E.M.: Theory and simulation of supercontinuum generation in transparent bulk media. Appl. Phys. B 77, 185–195 (2003)

    Article  ADS  Google Scholar 

  26. Kolesik, M., Wright, E.M., Moloney, J.V.: Interpretation of the spectrally resolved far field of femtosecond pulses propagating in bulk nonlinear dispersive media. Opt. Express 13, 10729–10741 (2005)

    Article  ADS  Google Scholar 

  27. DeMartini, F., Townes, C.H., Gustafson, T.K., Kelley, P.L.: Self-steepening of light pulses. Phys. Rev. 164, 312–323 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrius Dubietis .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubietis, A., Couairon, A. (2019). Governing Physical Effects. In: Ultrafast Supercontinuum Generation in Transparent Solid-State Media. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-14995-6_2

Download citation

Publish with us

Policies and ethics