Skip to main content

Localization Fusion for Aerial Vehicles in Partially GNSS Denied Environments

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11472))

Abstract

In this paper, we report on early results of the experimental deployment of localization techniques for a multi-rotor Micro Aerial Vehicle (MAV). In particular, we focus on deployment scenarios where the Global Navigation Satellite System (GNSS) does not provide a reliable signal, and thus it is not desirable to rely solely on the GNSS. Therefore, we consider recent advancements in the visual localization, and we employ an onboard RGB-D camera to develop a robust and reliable solution for the MAV localization in partially GNSS denied operational environments. We consider a localization method based on Kalman filter for data fusion of the vision-based localization with the signal from the GNSS. Based on the reported experimental results, the proposed solution supports the localization of the MAV for the temporarily unavailable GNSS, but also improves the position estimation provided by the incremental vision-based localization system while it can run using onboard computational resources of the small vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Báča, T., Heřt, D., Loianno, G., Saska, M., Kumar, V.: Model predictive trajectory tracking and collision avoidance for reliable outdoor deployment of unmanned aerial vehicles. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 6753–6760 (2018)

    Google Scholar 

  2. Collective of authors: Vicon Motion Systems Inc. https://www.vicon.com. Accessed 05 Aug 2018

  3. Collective of authors: Intel RealSense Depth Camera D435. https://click.intel.com/intelr-realsensetm-depth-camera-d435.html. Accessed 04 Aug 2018

  4. Cui, J.Q., Lai, S., Dong, X., Liu, P., Chen, B.M., Lee, T.H.: Autonomous navigation of UAV in forest. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 726–733 (2014)

    Google Scholar 

  5. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1691–1696 (2012)

    Google Scholar 

  6. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2018)

    Article  Google Scholar 

  7. Fischer, T., Pire, T., Čížek, P., De Cristóforis, P., Faigl, J.: Stereo vision-based localization for hexapod walking robots operating in rough terrains. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 2492–2497 (2016)

    Google Scholar 

  8. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22 (2014)

    Google Scholar 

  9. Gauglitz, S., Sweeney, C., Ventura, J., Turk, M., Höllerer, T.: Live tracking and mapping from both general and rotation-only camera motion. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 13–22 (2012)

    Google Scholar 

  10. Khoury, H.M., Kamat, V.R.: Evaluation of position tracking technologies for user localization in indoor construction environments. Autom. Constr. 18(4), 649–656 (2009)

    Article  Google Scholar 

  11. Lu, Y., Xue, Z., Xia, G.S., Zhang, L.: A survey on vision-based UAV navigation. Geo-Spatial Inf. Sci. 21(1), 21–32 (2018). https://doi.org/10.1080/10095020.2017.1420509

    Article  Google Scholar 

  12. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3061–3070 (2015)

    Google Scholar 

  13. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  14. Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  15. Nowicki, M., Belter, D., Kostusiak, A., Čížek, P., Faigl, J., Skrzypczynski, P.: An experimental study on feature-based SLAM for multi-legged robots with RGB-D sensors. Ind. Robot: Int. J. 44(4), 320–328 (2017)

    Article  Google Scholar 

  16. Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3400–3407 (2011)

    Google Scholar 

  17. Opromolla, R., Fasano, G., Rufino, G., Grassi, M., Savvaris, A.: LIDAR-inertial integration for UAV localization and mapping in complex environments. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 444–457 (2016)

    Google Scholar 

  18. Piasco, N., Sidibé, D., Demonceaux, C., Gouet-Brunet, V.: A survey on visual-based localization: on the benefit of heterogeneous data. Pattern Recognit. 74, 90–109 (2018)

    Article  Google Scholar 

  19. Pire, T., Fischer, T., Civera, J., De Cristóforis, P., Jacobo Berlles, J.: Stereo parallel tracking and mapping for robot localization. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 1373–1378 (2015)

    Google Scholar 

  20. Quigley, M., et al.: ROS: an open-source robot operating system. In: IEEE International Conference on Robotics and Automation (ICRA): Workshop on Open Source Software (2009)

    Google Scholar 

  21. Stelzer, A., Hirschmüller, H., Görner, M.: Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain. Int. J. Robot. Res. 31(4), 381–402 (2012)

    Article  Google Scholar 

  22. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 573–580 (2012)

    Google Scholar 

  23. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  24. Toloei, A., Niazi, S.: State estimation for target tracking problems with nonlinear Kalman filter algorithms. Int. J. Comput. Appl. 98(17), 30–36 (2014)

    Google Scholar 

  25. Usenko, V., Engel, J., Stückler, J., Cremers, D.: Direct visual-inertial odometry with stereo cameras. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1885–1892 (2016)

    Google Scholar 

  26. Wang, C., Wang, T., Liang, J., Chen, Y., Zhang, Y., Wang, C.: Monocular visual slam for small UAVS in GPS-denied environments. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 896–901 (2012). https://doi.org/10.1109/ROBIO.2012.6491082

  27. Wang, F., Cui, J.Q., Chen, B.M., Lee, T.H.: A comprehensive UAV indoor navigation system based on vision optical flow and laser FastSLAM. Acta Autom. Sinica 39(11), 1889–1899 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by the Technology Agency of the Czech Republic (TAČR) under research Project No. TH03010362.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bayer, J., Faigl, J. (2019). Localization Fusion for Aerial Vehicles in Partially GNSS Denied Environments. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2018. Lecture Notes in Computer Science(), vol 11472. Springer, Cham. https://doi.org/10.1007/978-3-030-14984-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14984-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14983-3

  • Online ISBN: 978-3-030-14984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics