Skip to main content

Monocular Kinematics Based on Geometric Algebras

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11472))

Abstract

When reconstructing 3D scene by an autonomous system we usually use a pin hole camera. To adopt the result for a human vision, this camera must be replaced by a human eye-like device. Therefore we derive certain characteristics of this model in an appropriate mathematical formalism. In particular, we escribe the general position of a human eye and its movements using the notions of geometric algebra. The assumption is that the eye is focused on distant targets. As the main result, we describe the eye position and determine all axes of rotation available in the eye general position in terms of geometric algebra. All the expressions are based on medically traced laws of Donders’ and Listing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bayro-Corrochano, W.: Modeling the 3D kinematics of the eye in the geometric algebra framework. Pattern Recogn. 36(12), 2993–3012 (2003). https://doi.org/10.1016/S0031-3203(03)00180-8

    Article  MATH  Google Scholar 

  2. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-oriented Approach to Geometry, 1st edn. Morgan Kaufmann Publishers Inc., Burlington (2007)

    Google Scholar 

  3. Haslwanter, T.: Mathematics of three-dimensional eye rotations. Vision. Res. 35(12), 1727–1739 (1995). https://doi.org/10.1016/0042-6989(94)00257-M

    Article  Google Scholar 

  4. Hestenes, D.: New Foundations for Classical Mechanics, 2nd edn. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  5. Hildenbrand, D.: Foundations of Geometric Algebra Computing. Springer, New York (2013). https://doi.org/10.1007/978-3-642-31794-1

    Book  MATH  Google Scholar 

  6. Hrdina, J., Návrat, A.: Binocular computer vision based on conformal geometric algebra. Adv. Appl. Clifford Algebr. 27c, 1945–1959 (2017). https://doi.org/10.1007/s00006-017-0764-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Geometric control of the trident snake robot based on CGA. Adv. Appl. Clifford Algebr. 27, 621–632 (2017)

    Article  MathSciNet  Google Scholar 

  8. Hrdina, J., Vašík, P.: Notes on differential kinematics in conformal geometric algebra approach. In: Matoušek, R. (ed.) Mendel 2015. AISC, vol. 378, pp. 363–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19824-8_30

    Chapter  Google Scholar 

  9. Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Geometric algebras for uniform colour spaces. Math. Methods Appl. Sci. 41, 4117–4130 (2018). https://doi.org/10.1002/mma.4489

    Article  MathSciNet  MATH  Google Scholar 

  10. Hrdina, J., Návrat, A., Vašík, P.: Control of 3-link robotic snake based on conformal geometric algebra. Adv. Appl. Clifford Algebr. 26, 1069–1080 (2016). https://doi.org/10.1007/s00006-015-0621-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Fish eye correction by CGA non-linear transformation. Math. Methods Appl. Sci. 41, 4106–4116 (2018). https://doi.org/10.1002/mma.4455

    Article  MathSciNet  MATH  Google Scholar 

  12. Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: CGA-based robotic snake control. Adv. Appl. Clifford Algebr. 27, 621–632 (2017). https://doi.org/10.1007/s00006-016-0695-5

    Article  MathSciNet  MATH  Google Scholar 

  13. Lounesto, P.: Clifford Algebra and Spinors, 2nd edn. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  14. MacDonald, A.: Linear and Geometric Algebra. Third printing, corrected and slightly revised (2010)

    Google Scholar 

  15. Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, New York (2009). https://doi.org/10.1007/978-3-540-89068-3

    Book  MATH  Google Scholar 

  16. Wong, A.M.F.: Listing’s law: clinical significance and implications for neural control. Surv. Ophthalmol. 49(6), 563–575 (2004). https://doi.org/10.1016/j.survophthal.2004.08.002

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant of the Czech Science Foundation no. 17-21360S, “Advances in Snake-like Robot Control” and by a Grant No. FSI-S-17-4464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Stodola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stodola, M. (2019). Monocular Kinematics Based on Geometric Algebras. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2018. Lecture Notes in Computer Science(), vol 11472. Springer, Cham. https://doi.org/10.1007/978-3-030-14984-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14984-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14983-3

  • Online ISBN: 978-3-030-14984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics