Skip to main content

Environmental, Economic, and Social Impact of Industrial Symbiosis: Methods and Indicators Review

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 281))

Abstract

Industrial symbiosis is an important approach to achieve sustainability and to reduce significantly wastes. It is, therefore, imperative to evaluate and quantify the real impact of industrial symbiosis in order to provide more synergies between companies and more policies to encourage this practice. This article aims to present a literature review about the methods and indicators used to assess the impact of industrial symbiosis in environmental, economic, and social context. The advantages and limitations of each of them are also listed. This review addresses the economic and environmental aspects are the most studied, all methods and indicators that have been developed, and the advantages that come from industrial symbiosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. IPCC: Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland. Homepage. http://www.ipcc.ch. Last accessed 1 Mar 2018

  2. Zhang, Y., Zheng, H., Chen, B., Su, M., Liu, G.: A review of industrial symbiosis research: theory and methodology. Front. Earth Sci. 9, 91–104 (2014)

    Article  Google Scholar 

  3. Chertow, M., Ehrenfeld, J.: Organizing self-organizing systems: toward a theory of industrial symbiosis. J. Ind. Ecol. 16, 13–27 (2012)

    Article  Google Scholar 

  4. Herczeg, G., Akkerman, R., Hauschild, M.Z.: Supply chain collaboration in industrial symbiosis networks. J. Clean. Prod. 171, 1058–1067 (2018)

    Article  Google Scholar 

  5. Jiao, W., Boons, F.: Toward a research agenda for policy intervention and facilitation to enhance industrial symbiosis based on a comprehensive literature review. J. Clean. Prod. 67, 14–25 (2014)

    Article  Google Scholar 

  6. Zhe, L., et al.: An emergy-based hybrid method for assessing industrial symbiosis of an industrial park. J. Clean. Prod. 114, 132–140 (2016)

    Article  Google Scholar 

  7. Ohnishi, S., Dong, H., Geng, Y., Fujii, M., Fujita, T.: A comprehensive evaluation on industrial & urban symbiosis by combining MFA, carbon footprint and emergy methods—case of Kawasaki, Japan. Ecol. Indic. 73, 315–324 (2017)

    Article  Google Scholar 

  8. Daddi, T., Nucci, B., Iraldo, F.: Using life cycle assessment (LCA) to measure the environmental benefits of industrial symbiosis in an industrial cluster of SMEs. J. Clean. Prod. 147, 157–164 (2017)

    Article  Google Scholar 

  9. Trokanas, N., Cecelja, F., Raafat, T.: Semantic approach for pre-assessment of environmental indicators in industrial symbiosis. J. Clean. Prod. 96, 349–361 (2015)

    Article  Google Scholar 

  10. Felicio, M., Amaral, D., Esposto, K., Gabarrell Durany, X.: Industrial symbiosis indicators to manage eco-industrial parks as dynamic systems. J. Clean. Prod. 118, 54–64 (2016)

    Article  Google Scholar 

  11. Valenzuela-Venegas, G., et al.: A resilience indicator for eco-industrial parks. J. Clean. Prod. 174, 807–820 (2018)

    Article  Google Scholar 

  12. Yang, W., Wang, S., Chen, B.: Embodied carbon emission analysis of eco-industrial park based on input-output analysis and ecological network analysis. Energy Procedia 142, 3102–3107 (2017)

    Article  Google Scholar 

  13. Zhang, Y., Zheng, H., Fath, B.D.: Ecological network analysis of an industrial symbiosis system: a case study of the Shandong Lubei eco-industrial park. Ecol. Modell. 306, 174–184 (2015)

    Article  Google Scholar 

  14. Martin, M., Svensson, N., Eklund, M.: Who gets the benefits? An approach for assessing the environmental performance of industrial symbiosis. J. Clean. Prod. 98, 263–271 (2015)

    Article  Google Scholar 

  15. Singh, A., Lou, H.H., Yaws, C.L., Hopper, J.R., Pike, R.W.: Environmental impact assessment of different design schemes of an industrial ecosystem. Resour. Conserv. Recycl. 51, 294–313 (2007)

    Article  Google Scholar 

  16. Sharib, S., Halog, A.: Enhancing value chains by applying industrial symbiosis concept to the Rubber City in Kedah, Malaysia. J. Clean. Prod. 141, 1095–1108 (2017)

    Article  Google Scholar 

  17. Wu, J., Wang, R., Pu, G., Qi, H.: Integrated assessment of exergy, energy and carbon dioxide emissions in an iron and steel industrial network. Appl. Energy 183, 430–444 (2016)

    Article  Google Scholar 

  18. Ohnishi, S., Fujita, T., Chen, X., Fujii, M.: Econometric analysis of the performance of recycling projects in Japanese Eco-Towns. J. Clean. Prod. 33, 217–225 (2012)

    Article  Google Scholar 

  19. Song, X., Geng, Y., Dong, H., Chen, W.: Social network analysis on industrial symbiosis: a case of Gujiao eco-industrial park. J. Clean. Prod. 193, 414–423 (2018)

    Article  Google Scholar 

  20. Fan, Y., Qiao, Q., Xian, C., Xiao, Y., Fang, L.: A modified ecological footprint method to evaluate environmental impacts of industrial parks. Resour. Conserv. Recycl. 125, 293–299 (2017)

    Article  Google Scholar 

  21. Brondi, C., et al.: Sustainability-based optimization criteria for industrial symbiosis: the Symbioptima case. Procedia CIRP 69, 855–860 (2018)

    Article  Google Scholar 

  22. Wen, Z., Meng, X.: Quantitative assessment of industrial symbiosis for the promotion of circular economy: a case study of the printed circuit boards industry in China’s Suzhou New District. J. Clean. Prod. 90, 211–219 (2015)

    Article  Google Scholar 

  23. Valenzuela-Venegas, G., Salgado, J.C., Díaz-Alvarado, F.A.: Sustainability indicators for the assessment of eco-industrial parks: classification and criteria for selection. J. Clean. Prod. 133, 99–116 (2016)

    Article  Google Scholar 

  24. Mantese, G.C., Amaral, D.C.: Agent-based simulation to evaluate and categorize industrial symbiosis indicators. J. Clean. Prod. 186, 450–464 (2018)

    Article  Google Scholar 

  25. International Organization for Standardization: ISO 14040, Environmental management—Life cycle assessment—Principles and framework (2006)

    Google Scholar 

  26. Bjorn, A., Owsianiak, M., Molin, C., Hauschild, M.Z.: LCA history. In: Hauschild, M., Rosenbaum, R., Olsen, S. (eds.) Life Cycle Assessment, pp. 17–30. Springer, Cham (2018)

    Google Scholar 

  27. Zhang, Y., et al.: Life cycle assessment of industrial symbiosis in Songmudao chemical industrial park, Dalian, China. J. Clean. Prod. 158, 192–199 (2017)

    Article  Google Scholar 

  28. Ammenberg, J., et al.: Improving the CO2 performance of cement, part III: the relevance of industrial symbiosis and how to measure its impact. J. Clean. Prod. 98, 145–155 (2015)

    Article  Google Scholar 

  29. Hashimoto, S., Fujita, T., Geng, Y., Nagasawa, E.: Realizing CO2 emission reduction through industrial symbiosis: a cement production case study for Kawasaki. Resour. Conserv. Recycl. 54, 704–710 (2010)

    Article  Google Scholar 

  30. Sokka, L., Lehtoranta, S., Nissinen, A., Melanen, M.: Analyzing the environmental benefits of industrial symbiosis: life cycle assessment applied to a Finnish forest industry complex. J. Ind. Ecol. 15, 137–155 (2011)

    Article  Google Scholar 

  31. Yu, F., Han, F., Cui, Z.: Assessment of life cycle environmental benefits of an industrial symbiosis cluster in China. Environ. Sci. Pollut. Res. 22, 5511–5518 (2015)

    Article  Google Scholar 

  32. International Organisation for Standardization: ISO 14044, Environmental management—Life cycle assessment—Requirements and guidelines (2006)

    Google Scholar 

  33. Eckelman, M.J., Chertow, M.R.: Life cycle energy and environmental benefits of a US industrial symbiosis. Int. J. Life Cycle Assess. 18, 1524–1532 (2013)

    Article  Google Scholar 

  34. Mohammed, F., Biswas, W.K., Yao, H., Tadé, M.: Identification of an environmentally friendly symbiotic process for the reuse of industrial byproduct—an LCA perspective. J. Clean. Prod. 112, 3376–3387 (2016)

    Article  Google Scholar 

  35. Liu, Q., et al.: Life cycle assessment of an industrial symbiosis based on energy recovery from dried sludge and used oil. J. Clean. Prod. 19, 1700–1708 (2011)

    Article  Google Scholar 

  36. Kim, H.W., Ohnishi, S., Fujii, M., Fujita, T., Park, H.S.: Evaluation and allocation of greenhouse gas reductions in industrial symbiosis. J. Ind. Ecol. 22, 275–287 (2018)

    Article  Google Scholar 

  37. Ehrenfeld, J.: Industrial ecology: a new field or only a metaphor? J. Clean. Prod. 12, 825–831 (2004)

    Article  Google Scholar 

  38. Brunner, P.H., Rechberger, H.: Practical Handbook of Material Flow Analysis, vol. 9 (2004)

    Google Scholar 

  39. Sendra, C., Gabarrell, X., Vicent, T.: Material flow analysis adapted to an industrial area. J. Clean. Prod. 15, 1706–1715 (2007)

    Article  Google Scholar 

  40. Sun, L., et al.: Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: a case of Liuzhou city, China. Resour. Conserv. Recycl. 119, 78–88 (2017)

    Article  Google Scholar 

  41. Winans, K., Kendall, A., Deng, H.: The history and current applications of the circular economy concept. Renew. Sustain. Energy Rev. 68, 825–833 (2017)

    Article  Google Scholar 

  42. Fischer-Kowalski, M., et al.: Methodology and indicators of economy-wide material flow accounting: state of the art and reliability across sources. J. Ind. Ecol. 15, 855–876 (2011)

    Article  Google Scholar 

  43. Odum, H.T.: Environmental Accounting: Emergy and Environmental Decision Making. Wiley (1995)

    Google Scholar 

  44. Fan, Y., Qiao, Q., Fang, L., Yao, Y.: Emergy analysis on industrial symbiosis of an industrial park—a case study of Hefei economic and technological development area. J. Clean. Prod. 141, 791–798 (2017)

    Article  Google Scholar 

  45. Geng, Y., et al.: Emergy-based assessment on industrial symbiosis: a case of Shenyang Economic and Technological Development Zone. Environ. Sci. Pollut. Res. 21, 13572–13587 (2014)

    Article  Google Scholar 

  46. Taskhiri, M.S., Tan, R.R., Chiu, A.S.F.: Emergy-based fuzzy optimization approach for water reuse in an eco-industrial park. Resour. Conserv. Recycl. 55, 730–737 (2011)

    Article  Google Scholar 

  47. Sun, L., et al.: Uncovering driving forces on urban metabolism—a case of Shenyang. J. Clean. Prod. 114, 171–179 (2016)

    Article  Google Scholar 

  48. Wang, L., Zhang, J., Ni, W.: Emergy evaluation of eco-industrial park with power plant. Ecol. Modell. 189, 233–240 (2005)

    Article  Google Scholar 

  49. Yang, H., Li, Y., Shen, J., Hu, S.: Evaluating waste treatment, recycle and reuse in industrial system: an application of the emergy approach. Ecol. Modell. 160, 13–21 (2003)

    Article  Google Scholar 

  50. Ren, J., Liang, H., Dong, L., Sun, L., Gao, Z.: Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization. Sci. Total Environ. 562, 789–801 (2016)

    Article  Google Scholar 

  51. Dong, H., Liu, Z., Geng, Y., Fujita, T., Fujii, M., Sun, L., Zhang, L.: Evaluating environmental performance of industrial park development: the case of Shenyang. J. Ind. Ecol. 22(6), 1402–1412 (2018)

    Article  Google Scholar 

  52. Giannetti, B.F., Bonilla, S.H., Silva, I.R., Almeida, C.M.V.B.: Cleaner production practices in a medium size gold-plated jewelry company in Brazil: when little changes make the difference. J. Clean. Prod. 16, 1106–1117 (2008)

    Article  Google Scholar 

  53. Ometto, A.R., Ramos, P.A.R., Lombardi, G.: The benefits of a Brazilian agro-industrial symbiosis system and the strategies to make it happen. J. Clean. Prod. 15, 1253–1258 (2007)

    Article  Google Scholar 

  54. Geng, Y., Zhang, P., Ulgiati, S., Sarkis, J.: Emergy analysis of an industrial park: the case of Dalian, China. Sci. Total Environ. 408, 5273–5283 (2010)

    Article  Google Scholar 

  55. Ulgiati, S., Bargigli, S., Raugei, M.: An emergy evaluation of complexity, information and technology, towards maximum power and zero emissions. J. Clean. Prod. 15, 1359–1372 (2007)

    Article  Google Scholar 

  56. Song, Q., Wang, Z., Li, J.: Sustainability evaluation of e-waste treatment based on emergy analysis and the LCA method: a case study of a trial project in Macau. Ecol. Indic. 30, 138–147 (2013)

    Article  Google Scholar 

  57. Brown, M.T., Buranakarn, V.: Emergy indices and ratios for sustainable material cycles and recycle options. Resour. Conserv. Recycl. 38, 1–22 (2003)

    Article  Google Scholar 

  58. Navarrete-Gutiérrez, T., Rugani, B., Pigné, Y., Marvuglia, A., Benetto, E.: On the complexity of life cycle inventory networks: role of life cycle processes with network analysis. J. Ind. Ecol. 20, 1094–1107 (2016)

    Article  Google Scholar 

  59. Mattila, T., Lehtoranta, S., Sokka, L., Melanen, M., Nissinen, A.: Methodological aspects of applying life cycle assessment to industrial symbioses. J. Ind. Ecol. 16, 51–60 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the research unit on Governance, Competitiveness and Public Policy (project POCI-01-0145-FEDER-006939), funded by FEDER funds through COMPETE2020—POCI and by national funds through FCT—Fundação para a Ciência e a Tecnologia. Radu Godina would like to acknowledge financial support from Fundação para a Ciência e Tecnologia (UID/EMS/00667/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João C. O. Matias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neves, A., Godina, R., Azevedo, S.G., Matias, J.C.O. (2019). Environmental, Economic, and Social Impact of Industrial Symbiosis: Methods and Indicators Review. In: Reis, J., Pinelas, S., Melão, N. (eds) Industrial Engineering and Operations Management II. IJCIEOM 2018. Springer Proceedings in Mathematics & Statistics, vol 281. Springer, Cham. https://doi.org/10.1007/978-3-030-14973-4_15

Download citation

Publish with us

Policies and ethics