Skip to main content

Models of Linear Viscoelasticity

  • Chapter
  • First Online:
Waves with Power-Law Attenuation

Abstract

This chapter gives an overview of the main methods for characterizing viscoelastic systems in terms of the relaxation modulus and the creep response. A comparison is also made between linear differential equation descriptions and convolution descriptions, and in particular those with fading convolution kernels

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • F. Akyildiz, R. Jones, K. Walters, On the spring-dashpot representation of linear viscoelastic behaviour. Rheol. Acta 29(5), 482–484 (1990)

    Article  Google Scholar 

  • L. Boltzmann, Zur theorie der elastischen nachwirkung (On the theory of hereditary elastic effects). Ann. Phys. Chem. 7, 624–654 (1876)

    Google Scholar 

  • M. Caputo, F. Mainardi,(1971 a), Linear models of dissipation in anelastic solids, La Rivista del Nuovo Cimento (1971-1977)1(2), 161–198 (1971a)

    Google Scholar 

  • P. Duhem, Études sur Léonard de Vinci: troisième série, Les précurseurs parisiens de Galilée (Studies of Leonardo da Vinci: vol. 3, The Parisian precursors of Galileo), Hermann (1913)

    Google Scholar 

  • H. Giesekus, An alternative approach to the linear theory of viscoelasticity and some characteristic effects being distinctive of the type of material. Rheol. Acta 34(1), 2–11 (1995)

    Article  Google Scholar 

  • E. Grant, The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional and Intellectual Contexts (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  • P. Haupt, A. Lion, On finite linear viscoelasticity of incompressible isotropic materials. Acta Mech. 159(1), 87–124 (2002)

    Article  MATH  Google Scholar 

  • S. Holm, M.B. Holm, Restrictions on wave equations for passive media. J. Acoust. Soc. Am. 142(4), (2017)

    Google Scholar 

  • S. Holm, S.P. Näsholm, A causal and fractional all-frequency wave equation for lossy media. J. Acoust. Soc. Am. 130(4), 2195–2202 (2011)

    Article  ADS  Google Scholar 

  • H. Kragh, The vortex atom: a victorian theory of everything. Centaurus 44(1–2), 32–114 (2002)

    Article  MathSciNet  Google Scholar 

  • A. Lion, On the thermodynamics of fractional damping elements. Contin. Mech. Thermodyn. 9(2), 83–96 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • F. Mainardi, Fractional Calculus and Waves in Linear Viscoelesticity: An Introduction to Mathematical Models (Imperial College Press, London, UK, 2010)

    Book  MATH  Google Scholar 

  • H. Markovitz, Boltzmann and the beginnings of linear viscoelasticity. Trans. Soc. Rheol. (1957–1977) 21(3), 381–398 (1977)

    Google Scholar 

  • P.L. Marston, L. Zhang, Unphysical consequences of negative absorbed power in linear passive scattering: Implications for radiation force and torque. JASA 139(6), 3139–3144 (2016)

    Article  Google Scholar 

  • J.C. Maxwell, IV. On the dynamical theory of gases. Phil. Trans. Royal Soc. 157, 49–88 (1867)

    Google Scholar 

  • A.N. Norris, An inequality for longitudinal and transverse wave attenuation coefficients. JASA 141(1), 475–479 (2017)

    Article  Google Scholar 

  • R.L. Schilling, R. Song, Z. Vondracek, Bernstein Functions: Theory and Applications (Walter de Gruyter, Berlin, 2012)

    Book  MATH  Google Scholar 

  • C. Smith, M.N. Wise, Energy and Empire: A Biographical Study of Lord Kelvin (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  • M. Stanley, Why should physicists study history? Phys. Today 69(7), 39–44 (2016)

    Article  Google Scholar 

  • P. Triverio, S. Grivet-Talocia, M.S. Nakhla, F.G. Canavero, R. Achar, Stability, causality, and passivity in electrical interconnect models. IEEE Trans. Adv. Packag. 30(4), 795–808 (2007)

    Article  Google Scholar 

  • N.W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction, (Springer, Berlin, 1989) (Reprinted in 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sverre Holm .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holm, S. (2019). Models of Linear Viscoelasticity. In: Waves with Power-Law Attenuation. Springer, Cham. https://doi.org/10.1007/978-3-030-14927-7_3

Download citation

Publish with us

Policies and ethics