Skip to main content

Average Bit Error Probability Analysis for Cooperative DF Relaying in Wireless Energy Harvesting Networks

  • Conference paper
  • First Online:
Book cover AETA 2018 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application (AETA 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 554))

  • 1107 Accesses

Abstract

Thanks to the benefits of energy harvesting (EH) in cooperative decode-and-forward (DF) relaying networks, we decided to consider a CRN deploying time-switching based relaying protocol (TSR) to study EH. To clearly evaluate the system performance, we derive the expressions for outage probability at high end-to-end signal-to-noise ratio (SNR), ergodic capacity, and the average bit error probability (ABEP). After finishing the performance analysis, we provide Monte-Carlo simulations to prove the performance and the correctness of the obtained numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kang, J.-M., Kim, I.-M., Kim, D.I.: Joint optimal mode switching and power adaptation for nonlinear energy harvesting SWIPT system over fading channel. IEEE Trans. Commun. 66(4), 1817–1832 (2018). https://doi.org/10.1109/TCOMM.2017.2787568

    Article  Google Scholar 

  2. De Rango, F., Gerla, M., Marano, S.: A scalable routing scheme with group motion support in large and dense wireless ad hoc networks. Comput. Electr. Eng. 32(1–3), 224–240 (2006). https://doi.org/10.1016/j.compeleceng.2006.01.017

    Article  MATH  Google Scholar 

  3. Fazio, P., De Rango, F., Sottile, C.: A new interference aware on demand routing protocol for vehicular networks. In: Proceedings of the 2011 International Symposium on Performance Evaluation of Computer and Telecommunication Systems, SPECTS 2011, pp. 98–103 (2011). art. no. 5984853

    Google Scholar 

  4. Nguyen, H.-S., Nguyen, T.-S., Voznak, M.: Relay selection for SWIPT: performance analysis of optimization problems and the trade-off between ergodic capacity and energy harvesting. AEU Int. J. Electron. Commun. 85, 59–67 (2018)

    Article  Google Scholar 

  5. De Rango, F., Lonetti, P., Marano, S.: MEA-DSR: a multipath energy-aware routing protocol for wireless Ad Hoc Networks. IFIP Int. Fed. Inf. Process. 265, 215–225 (2008)

    Google Scholar 

  6. Rabie, K.M., Adebisi, B., Alouinik, M.-S.: Half-duplex and full-duplex AF and DF relaying with energy-harvesting in log-normal fading. IEEE Trans. Green Commun. Netw. 1(4), 468–480 (2017). https://doi.org/10.1109/TGCN.2017.2740258

    Article  Google Scholar 

  7. Zhao, Y., Adve, R.: Symbol error rate of selection amplify-and-forward relay systems. IEEE Commun. Lett. 10(11), 757–759 (2016). https://doi.org/10.1109/LCOMM.2006.060774

    Article  Google Scholar 

  8. Bai, X., Shao, J., Tian, J., Shi, L.: Power-splitting scheme for nonlinear energy harvesting AF relaying with direct link. Wirel. Commun. Mobile Comput. 2018 (2018). https://doi.org/10.1155/2018/7906957

  9. Nasir, A.A., Zhou, X., Durrani, S., Kennedy, R.A.: Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wireless Commun. 12(7), 3622–3636 (2013). https://doi.org/10.1109/TWC.2013.062413.122042

    Article  Google Scholar 

  10. Nasir, A.A., Tuan, H.D., Ngo, D.T., Duong, T.Q., Poor, H.V.: Beamforming design for wireless information and power transfer systems: receive power-splitting versus transmit time-switching. IEEE Trans. Commun. 65(2), 876–889 (2017). https://doi.org/10.1109/TCOMM.2016.2631465

    Article  Google Scholar 

  11. Liu, L., Zhang, R., Chua, K.-C.: Information, wireless, transfer, power: a dynamic power splitting approach. IEEE Trans. Commun. 61(9), 3990–4001 (2013). https://doi.org/10.1109/TCOMM.2013.071813.130105

    Article  Google Scholar 

  12. Nguyen, H.-S., Nguyen, T.-S., Nguyen, M.T., Voznak, M.: Optimal time switching-based policies for efficient transmit power in wireless energy harvesting small cell cognitive relaying networks. Wireless Pers. Commun. Int. J. 99(4), 1605–1624 (2018). https://doi.org/10.1007/s11277-018-5296-2

    Article  Google Scholar 

  13. Lu, G., Shi, L., Ye, Y.: Maximum throughput of TS/PS scheme in an AF relaying network with non-linear energy harvester. IEEE Access, 26617–26625 (2018). https://doi.org/10.1109/ACCESS.2018.2834225

  14. Nguyen, H.-S., Voznak, M., Nguyen, M.-T., Sevcik, L.: Performance analysis with wireless power transfer constraint policies in full-duplex relaying networks. ELEKTRONIKA IR ELEKTROTECHNIKA 24(4), 1215–1392 (2017). https://doi.org/10.5755/j01.eie.23.4.18725

    Article  Google Scholar 

  15. Yan, Z., Chen, S., Zhang, X., Liu, H.-L.: Outage performance analysis of wireless energy harvesting relay-assisted random underlay cognitive networks. IEEE Internet Things J. (2018). https://doi.org/10.1109/JIOT.2018.2800716

    Article  Google Scholar 

  16. Nguyen, H.-S., Nguyen, T.-S., Vo, V.-T., Voznak, M.: Hybrid full-duplex/half-duplex relay selection scheme with optimal power under individual power constraints and energy harvesting. Comput. Commun. 124, 31–44 (2018)

    Article  Google Scholar 

  17. Peng, C., Li, F., Liu, H.: Wireless energy harvesting two-way relay networks with hardware impairments. Sensors (2017). https://doi.org/10.3390/s17112604

    Article  Google Scholar 

  18. Gradshtein, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 4th edn. Academic Press Inc., New York (1980)

    Google Scholar 

  19. Lou, Y., Qi-Yue, Y., Cheng, J., Zhao, H.-L.: Exact BER analysis of selection combining for differential SWIPT relaying systems. IEEE Signal Process. Lett. 24(8), 1198–1202 (2017). https://doi.org/10.1109/LSP.2017.2705066

    Article  Google Scholar 

  20. Cho, K., Yoon, D.: On the general BER expression of one and two dimensional amplitude modulations. IEEE Trans. Commun. 50(7), 1074–1080 (2002). https://doi.org/10.1109/TCOMM.2002.800818

    Article  Google Scholar 

Download references

Acknowledgments

This research received funding from the grant No. SP2018/59 conducted by VSB-Technical University of Ostrava, Czech Republic and partially was supported by The Czech Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations project No. LM2015070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan N. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, HS., Nguyen, TS., Nguyen, T.N., Voznak, M. (2020). Average Bit Error Probability Analysis for Cooperative DF Relaying in Wireless Energy Harvesting Networks. In: Zelinka, I., Brandstetter, P., Trong Dao, T., Hoang Duy, V., Kim, S. (eds) AETA 2018 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2018. Lecture Notes in Electrical Engineering, vol 554. Springer, Cham. https://doi.org/10.1007/978-3-030-14907-9_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14907-9_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14906-2

  • Online ISBN: 978-3-030-14907-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics