Skip to main content

DCM Boost Converter in CPM Operation for Tuning Piezoelectric Energy Harvesters

  • Conference paper
  • First Online:
AETA 2018 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application (AETA 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 554))

  • 1133 Accesses

Abstract

The power extraction from piezoelectric energy harvesters is considered an important alternative to the employment of batteries when powering ultra-low power circuits. However, the amount of extracted power and the frequency range where extraction is possible remain as key challenges for practical implementations. In this paper, a boost rectifier in Current Programmed Mode (CPM) able to emulate a complex load at its input terminals is presented. This circuit is validated through circuit simulation using PSIM9. From the results, the circuit is capable of extracting the maximum available power from a piezoelectric harvester, modeled by an electric equivalent circuit, at its first resonant frequency. This is achieved by the emulation of an RC network at the harvester’s terminals by controlling the peak current through its inductance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelmoula, H., Abdelkefi, A.: Ultra-wide bandwidth improvement of piezoelectric energy harvesters through electrical inductance coupling. Eur. Phys. J. Spec. Top. 224(14–15), 2733–2753 (2015). https://doi.org/10.1140/epjst/e2015-02586-4

    Article  Google Scholar 

  2. Bowden, J.A., Burrow, S.G., Cammarano, A., Clare, L.R., Mitcheson, P.D.: Switched-mode load impedance synthesis to parametrically tune electromagnetic vibration energy harvesters. IEEE/ASME Trans. Mechatron. 20(2), 603–610 (2015). https://doi.org/10.1109/TMECH.2014.2325825

    Article  Google Scholar 

  3. Gomez-Casseres, E.A., Arbulu, S.M., Franco, R.J., Contreras, R., Martinez, J.: Comparison of passive rectifier circuits for energy harvesting applications. In: 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–6 (2016). https://doi.org/10.1109/CCECE.2016.7726840

  4. Le, T.T., Han, J., von Jouanne, A., Mayaram, K., Fiez, T.S.: Piezoelectric micro-power generation interface circuits. IEEE J. Solid-State Circuits 41(6), 1411–1420 (2006). https://doi.org/10.1109/JSSC.2006.874286

    Article  Google Scholar 

  5. Liu, H., Qian, Y., Lee, C.: A multi-frequency vibration-based MEMS electromagnetic energy harvesting device. Sens. Actuators A: Phys. 204, 37–43 (2013). https://doi.org/10.1016/j.sna.2013.09.015

    Article  Google Scholar 

  6. Sankman, J., Ma, D.: A 12-\(\upmu \)W to 1.1-mW AIM piezoelectric energy harvester for time-varying vibrations with 450-nA IQ. IEEE Trans. Power Electron. 30(2), 632–643 (2015). https://doi.org/10.1109/TPEL.2014.2313738

    Google Scholar 

  7. Szarka, G.D., Burrow, S.G., Stark, B.H.: Ultralow power, fully autonomous boost rectifier for electromagnetic energy harvesters. IEEE Trans. Power Electron. 28(7), 3353–3362 (2013). https://doi.org/10.1109/TPEL.2012.2219594

    Article  Google Scholar 

  8. Szarka, G.D., Stark, B.H., Burrow, S.G.: Review of power conditioning for kinetic energy harvesting systems. IEEE Trans. Power Electron. 27(2), 803–815 (2012). https://doi.org/10.1109/TPEL.2011.2161675

    Article  Google Scholar 

  9. Todaro, M.T., Guido, F., Mastronardi, V., Desmaele, D., Epifani, G., Algieri, L., De Vittorio, M.: Piezoelectric MEMS vibrational energy harvesters: advances and outlook. Microelectron. Eng. (2017). https://doi.org/10.1016/j.mee.2017.10.005. http://www.sciencedirect.com/science/article/pii/S0167931717303349

  10. Toprak, A., Tigli, O.: Piezoelectric energy harvesting: state-of-the-art and challenges. Appl. Phys. Rev. 1(3), 031104 (2014). https://doi.org/10.1063/1.4896166

    Article  Google Scholar 

  11. Yang, G., Stark, B.H., Hollis, S.J., Burrow, S.G.: Challenges for energy harvesting systems under intermittent excitation. IEEE J. Emerg. Sel. Top. Circuits Syst. 4(3), 364–374 (2014)

    Article  Google Scholar 

  12. Yang, Y., Tang, L.: Equivalent circuit modeling of piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 20(18), 2223–2235 (2009). https://doi.org/10.1177/1045389X09351757

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Gomez-Casseres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gomez-Casseres, A., Florez, D., Cortes, D. (2020). DCM Boost Converter in CPM Operation for Tuning Piezoelectric Energy Harvesters. In: Zelinka, I., Brandstetter, P., Trong Dao, T., Hoang Duy, V., Kim, S. (eds) AETA 2018 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2018. Lecture Notes in Electrical Engineering, vol 554. Springer, Cham. https://doi.org/10.1007/978-3-030-14907-9_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14907-9_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14906-2

  • Online ISBN: 978-3-030-14907-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics