Skip to main content

Approximate Outputs of Accelerated Turing Machines Closest to Their Halting Point

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11431))

Included in the following conference series:

Abstract

The accelerated Turing machine (ATM) which can compute super-tasks are devices with the same computational structure as Turing machines (TM) and they are also defined as the work-horse of hypercomputation. Is the final output of the ATM can be produced at the halting state? We supported our analysis by reasoning on Thomson’s paradox and by looking closely the result of the Twin Prime conjecture. We make sure to avoid unnecessary discussion on the infinite amount of space used by the machine or considering Thomson’s lamp machine, on the difficulty of specifying a machine’s outcome. Furthermore, it’s important for us that a clear definition counterpart for ATMs of the non-halting/halting dichotomy for classical Turing must be introduced. Considering a machine which has run for a countably infinite number of steps, this paper addresses the issue of defining the output of a machine close or at the halting point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Copeland, B.: Accelerating turing machines. Mind. Mach. 12(2), 281–300 (2002)

    MATH  Google Scholar 

  2. Hamkins, J.: Infinite time turing machines. Mind. Mach. 12(4), 521–539 (2002)

    MATH  Google Scholar 

  3. Comfort, W.: Ultrafilters: some old and some new results. Bull. Am. Math. Logic Q. 83, 417–456 (1977)

    MathSciNet  MATH  Google Scholar 

  4. Hamkins, J.D., Seabold, D.E.: Infinite time turing machines with only one tape. Math. Log. Q. 47, 271–287 (2001). https://doi.org/10.1002/1521-3870(200105)47:2<271::AID-MALQ271>3.0.CO;2-6

    MathSciNet  MATH  Google Scholar 

  5. Welch, P.: Eventually infinite time turing machine degrees: infinite time decidable reals. J. Symbolic Logic 65(03), 1193–1203 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Burgin, M.: Algorithmic complexity as a criterion of unsolvability. Theor. Comput. Sci. 383(2), 244–259 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Baer, R., Leeuwen, J.: The halting problem for linear turing assemblers. J. Comput. Syst. Sci. 13(2), 119–135 (1976)

    MathSciNet  MATH  Google Scholar 

  8. Copeland, B., Shagrir, O.: Do accelerating turing machines compute the uncomputable. Mind. Mach. 21(2), 221–239 (2011)

    Google Scholar 

  9. Potgieter, P.: Zeno machines and hypercomputation. Theor. Comput. Sci. 358(1), 23–33 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Ord, T.: The many forms of hypercomputation. Appl. Math. Comput. 178(1), 143–153 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Hogarth, M.: Does general relativity allow an observer to view an eternity in a finite time? Found. Phys. Lett. 5, 173–181 (1992)

    MathSciNet  Google Scholar 

  12. Shagrir, O.: Super-tasks, accelerating turing machines and uncomputability. Theor. Comput. Sci. 317(1), 105–114 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Pitowsky, I.: The physical church thesis and physical computational complexity. Iyyun: Jerusalem Philos. Q. 39, 81–99 (1990)

    Google Scholar 

  14. Turing, A.: On Computable Numbers, with an Application to. http://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf

  15. Turing, A.: On computable numbers, with an application to the “Entscheidungsproblem”. Proc. Lond. Math. Soc. 42, 230–265 (1937)

    MathSciNet  MATH  Google Scholar 

  16. How Light Bulbs Work. In: HowStuffWorks. https://home.howstuffworks.com/light-bulb.htm

  17. Circuits and the Speed of Light. In: allaboutcircuits. https://www.allaboutcircuits.com/textbook/alternating-current/chpt-14/circuits-and-the-speed-of-light/

  18. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv: Neural and Evolutionary Computing (2014)

    Google Scholar 

  19. Mambou, S., Krejcar, O., Kuca, K., Selamat, A.: Novel cross-view human action model recognition based on the powerful view-invariant features technique. Future Internet 10(9), 89 (2018)

    Google Scholar 

  20. Mambou, S., Maresova, P., Krejcar, O., Selamat, A., Kuca, K.: Breast cancer detection using infrared thermal imaging and a deep learning model. Sensors 18, 2799 (2018)

    Google Scholar 

Download references

Acknowledgement

The work and the contribution were supported by the SPEV project “Smart Solutions in Ubiquitous Computing Environments”, 2019, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Krejcar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mambou, S., Krejcar, O., Selamat, A. (2019). Approximate Outputs of Accelerated Turing Machines Closest to Their Halting Point. In: Nguyen, N., Gaol, F., Hong, TP., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2019. Lecture Notes in Computer Science(), vol 11431. Springer, Cham. https://doi.org/10.1007/978-3-030-14799-0_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14799-0_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14798-3

  • Online ISBN: 978-3-030-14799-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics