Skip to main content

Feature Extraction Analysis for Emotion Recognition from ICEEMD of Multimodal Physiological Signals

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2019)

Abstract

The emotions identification is a very complex task due to depending on multiple variables individually and as a group. They are evaluated by different criteria such as arousal, valence, and dominance mainly. Several investigations have been focused on building prediction systems. Nevertheless, this is still an open research field. The main objective of this paper is the analysis of the Improved Complementary Ensemble Empirical Mode Decomposition (ICEEMD) for feature extraction from physiological signals for emotions prediction. Physiological signals and metadata of the DEAP database were used. First, the signals were preprocessed, then three decompositions were carried out using ICEEMD, Discrete Wavelet Transform (DWT), and Maximal overlap DWT. Feature extraction was carried out using Hermite coefficients, and multiple statistic measures from IMFs, coefficients DWT, and MODWT, and signals. Then, Relief F selection algorithms were applied to reducing the dimensionality of the feature space. Finally, Linear Discriminant Classifier (LDC) and K-NN cascade, and Random Forest classifiers were tested. The different decomposition techniques were compared, and the relevant signals and measures were established. The results demonstrated the capability of ICEEMD decomposition for emotions analysis from physiological signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M.K., Subramanian, R., Kia, S.M., Avesani, P., Patras, I., Sebe, N.: DECAF: MEG-based multimodal database for decoding affective physiological responses. IEEE Trans. Affect. Comput. 6(3), 209–222 (2015). https://doi.org/10.1109/TAFFC.2015.2392932

    Article  Google Scholar 

  2. Akinci, H.M., Yesil, E.: Emotion modeling using fuzzy cognitive maps. In: 2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI), pp. 49–55, November 2013. https://doi.org/10.1109/CINTI.2013.6705252

  3. Al Mejrad, A.: Human emotions detection using brain wave signals: a challenging. Eur. J. Sci. Res. 44(4), 640–659 (2010). https://www.scopus.com/inward/record.uri?eid=2-s2.0-79959391148&partnerID=40&md5=c98a158a7d5ed99b578c8d64210cf5b6, cited By 38

    Google Scholar 

  4. Alickovic, E., Kevric, J., Subasi, A.: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed. Sig. Process. Control 39, 94–102 (2018). https://doi.org/10.1016/j.bspc.2017.07.022

    Article  Google Scholar 

  5. Atkinson, J., Campos, D.: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Syst. Appl. 47, 35–41 (2016). https://doi.org/10.1016/j.eswa.2015.10.049. http://www.sciencedirect.com/science/article/pii/S0957417415007538

    Article  Google Scholar 

  6. Bajaj, V., Pachori, R.B.: Human emotion classification from EEG signals using multiwavelet transform. In: 2014 International Conference on Medical Biometrics, pp. 125–130, May 2014. https://doi.org/10.1109/ICMB.2014.29

  7. Barzegar, R., Asghari Moghaddam, A., Adamowski, J., Ozga-Zielinski, B.: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model. Stoch. Env. Res. Risk Assess. 32(3), 799–813 (2018). https://doi.org/10.1007/s00477-017-1394-z

    Article  Google Scholar 

  8. Basu, S., et al.: Emotion recognition based on physiological signals using valence-arousal model. In: 2015 Third International Conference on Image Information Processing (ICIIP), pp. 50–55. IEEE (2015)

    Google Scholar 

  9. Becerra, M.A., et al.: Odor pleasantness classification from electroencephalographic signals and emotional states. In: Serrano C., J.E., Martínez-Santos, J.C. (eds.) CCC 2018. CCIS, vol. 885, pp. 128–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98998-3_10

    Chapter  Google Scholar 

  10. Becerra, M.A., et al.: Electroencephalographic signals and emotional states for tactile pleasantness classification. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds.) IWAIPR 2018. LNCS, vol. 11047, pp. 309–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01132-1_35

    Chapter  Google Scholar 

  11. Bong, S.Z., Wan, K., Murugappan, M., Ibrahim, N.M., Rajamanickam, Y., Mohamad, K.: Implementation of wavelet packet transform and non linear analysis for emotion classification in stroke patient using brain signals. Biomed. Sig. Process. Control 36, 102–112 (2017). https://doi.org/10.1016/j.bspc.2017.03.016. http://www.sciencedirect.com/science/article/pii/S1746809417300654

    Article  Google Scholar 

  12. Colominas, M.A., Schlotthauer, G., Torres, M.E.: Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomed. Sig. Process. Control 14(1), 19–29 (2014). https://doi.org/10.1016/j.bspc.2014.06.009. http://dx.doi.org/10.1016/j.bspc.2014.06.009

    Article  Google Scholar 

  13. Fontaine, J.R., Scherer, K.R., Roesch, E.B., Ellsworth, P.C.: The world of emotions is not two-dimensional. Psychol. Sci. 18(12), 1050–1057 (2007). https://doi.org/10.1111/j.1467-9280.2007.02024.x. pMID: 18031411

    Article  Google Scholar 

  14. Gaur, P., Pachori, R.B., Wang, H., Prasad, G.: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry. Expert Syst. Appl. 95, 201–211 (2018). https://doi.org/10.1016/j.eswa.2017.11.007

    Article  Google Scholar 

  15. Greco, A., Valenza, G., Lanata, A., Rota, G., Scilingo, E.P.: Electrodermal activity in bipolar patients during affective elicitation. IEEE J. Biomed. Health Inform. 18(6), 1865–1873 (2014). https://doi.org/10.1109/JBHI.2014.2300940

    Article  Google Scholar 

  16. Ha, T.M., Bunke, H.: Off-line, handwritten numeral recognition by perturbation method. IEEE Trans. Pattern Anal. Mach. Intell. 5, 535–539 (1997)

    Article  Google Scholar 

  17. Jia, J., Goparaju, B., Song, J., Zhang, R., Westover, M.B.: Automated identification of epileptic seizures in EEG signals based on phase space representation and statistical features in the CEEMD domain. Biomed. Sig. Process. Control 38, 148–157 (2017). https://doi.org/10.1016/j.bspc.2017.05.015. http://linkinghub.elsevier.com/retrieve/pii/S1746809417301039

    Article  Google Scholar 

  18. Jie, X., Cao, R., Li, L.: Emotion recognition based on the sample entropy of EEG. Bio-med. Mater. Eng. 24(1), 1185–1192 (2014)

    Google Scholar 

  19. Khezri, M., Firoozabadi, M., Sharafat, A.R.: Reliable emotion recognition system based on dynamic adaptive fusion of forehead biopotentials and physiological signals. Comput. Methods Programs Biomed. 122(2), 149–164 (2015). https://doi.org/10.1016/j.cmpb.2015.07.006. http://www.sciencedirect.com/science/article/pii/S0169260715001959

    Article  Google Scholar 

  20. Koelstra, S., et al.: DEAP: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012). https://doi.org/10.1109/T-AFFC.2011.15

    Article  Google Scholar 

  21. Li, K., Li, X., Zhang, Y., Zhang, A.: Affective state recognition from EEG with deep belief networks. In: 2013 IEEE International Conference on Bioinformatics and Biomedicine, pp. 305–310, December 2013. https://doi.org/10.1109/BIBM.2013.6732507

  22. Mohammadi, Z., Frounchi, J., Amiri, M.: Wavelet-based emotion recognition system using EEG signal. Neural Comput. Appl. 28(8), 1985–1990 (2016). https://doi.org/10.1007/s00521-015-2149-8

    Article  Google Scholar 

  23. Nicolaou, M.A., Gunes, H., Pantic, M.: Continuous prediction of spontaneous affect from multiple cues and modalities in valence-arousal space. IEEE Trans. Affect. Comput. 2(2), 92–105 (2011). https://doi.org/10.1109/T-AFFC.2011.9

    Article  Google Scholar 

  24. Posner, J., Russell, J.A., Peterson, B.S.: The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17(3), 715–734 (2005). https://doi.org/10.1017/S0954579405050340

    Article  Google Scholar 

  25. Rajesh, K.N., Dhuli, R.: Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier. Biomed. Sig. Process. Control 41, 242–254 (2018). https://doi.org/10.1016/j.bspc.2017.12.004. http://dx.doi.org/10.1016/j.bspc.2017.12.004

    Article  Google Scholar 

  26. Rozgić, V., Vitaladevuni, S.N., Prasad, R.: Robust EEG emotion classification using segment level decision fusion. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1286–1290, May 2013. https://doi.org/10.1109/ICASSP.2013.6637858

  27. Thejaswini, T., Ravikumar, K.M.: Detection of human emotions using features based on the mulitwavelet transform of EEG signals. Brain-Comput. Interfaces: Curr. Trends Appl. 119–122 (2018). https://books.google.com/books?id=2LUjBQAAQBAJ&pgis=1

  28. Shu, L., et al.: A review of emotion recognition using physiological signals. Sensors 18(7), 2074 (2018). https://doi.org/10.3390/s18072074

    Article  Google Scholar 

  29. Soleymani, M., Asghari-Esfeden, S., Fu, Y., Pantic, M.: Analysis of EEG signals and facial expressions for continuous emotion detection. IEEE Trans. Affect. Comput. 7(1), 17–28 (2016). https://doi.org/10.1109/TAFFC.2015.2436926

    Article  Google Scholar 

  30. Thejaswini, S., Ravi Kumar, K.M., Rupali, S., Abijith, V.: EEG based emotion recognition using wavelets and neural networks classifier of emotion. J. Pers. Soc. Psychol. (2017). https://doi.org/10.1007/978-981-10-6698-6-10

  31. Verma, G.K., Tiwary, U.S.: Multimodal fusion framework: a multiresolution approach for emotion classification and recognition from physiological signals. NeuroImage 102, 162–172 (2014). https://doi.org/10.1016/j.neuroimage.2013.11.007. http://www.sciencedirect.com/science/article/pii/S1053811913010999, multimodal Data Fusion

    Article  Google Scholar 

  32. Vijayan, A.E., Sen, D., Sudheer, A.P.: EEG-based emotion recognition using statistical measures and auto-regressive modeling. In: 2015 IEEE International Conference on Computational Intelligence Communication Technology, pp. 587–591, February 2015. https://doi.org/10.1109/CICT.2015.24

  33. Yang, B., Zhang, T., Zhang, Y., Liu, W., Wang, J., Duan, K.: Removal of electrooculogram artifacts from electroencephalogram using canonical correlation analysis with ensemble empirical mode decomposition. Cogn. Comput. 9(5), 626–633 (2017). https://doi.org/10.1007/s12559-017-9478-0

    Article  Google Scholar 

  34. Zhang, Z., et al.: Modulation signal recognition based on information entropy and ensemble learning. Entropy 20(3), 198 (2018)

    Article  MathSciNet  Google Scholar 

  35. Zheng, W.L., Guo, H.T., Lu, B.L.: Revealing critical channels and frequency bands for emotion recognition from EEG with deep belief network. In: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 154–157, April 2015. https://doi.org/10.1109/NER.2015.7146583

  36. Zhuang, X., Rozgić, V., Crystal, M.: Compact unsupervised EEG response representation for emotion recognition. In: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 736–739, June 2014. https://doi.org/10.1109/BHI.2014.6864469

Download references

Acknowledgment

The authors acknowledge to the research project “Desarrollo de una metodología de visualización interactiva y eficaz de información en Big Data” supported by Agreement No. 180 November 1st, 2016 by VIPRI from Universidad de Nariño.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez-Lara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez-Lara, J.F. et al. (2019). Feature Extraction Analysis for Emotion Recognition from ICEEMD of Multimodal Physiological Signals. In: Nguyen, N., Gaol, F., Hong, TP., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2019. Lecture Notes in Computer Science(), vol 11431. Springer, Cham. https://doi.org/10.1007/978-3-030-14799-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14799-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14798-3

  • Online ISBN: 978-3-030-14799-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics