Skip to main content

Cardiac Murmur Effects on Automatic Segmentation of ECG Signals for Biometric Identification: Preliminary Study

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2019)

Abstract

Biometric identification or authentication is a pattern recognition process, which is carried out acquiring different measures of human beings to distinguish them. Fingerprint and eye iris are the most known and used biometric techniques; nevertheless, also they are the most vulnerable to counterfeiting. Consequently, nowadays research has been focused on physiological signals and behavioral traits for biometric identification because these allow not only the authentication but also determine that the subject is alive. Electrocardiographic signals (ECG-S) have been studied for biometric identification demonstrating their capability. Taking into account that some pathologies are detected using ECG-S, these can affect the results of biometric identification; nonetheless, some diseases such as cardiac murmurs are not detected by ECG-S, but they can distort their morphology. Therefore, these signals must be analyzed considering different pathologies. In this paper, a biometric study was carried out from 40 subjects (20 with cardiac murmurs and 20 without cardiac affections). First, the ECG-S were preprocessed and segmented using the fast method for detecting T waves with annotation of P and T waves, then feature extraction was carried out using discrete wavelet transform (DWT), maximal overlap DWT, cepstral coefficients, and statistical measures. Then, rough set and relief F algorithms were applied to datasets (pathological and normal signals) for attribute reduction. Finally, multiple classifiers and combinations of them were tested. The results of the segmentation were analyzed achieving low results for signals affected by cardiac murmurs. On the other hand, according to the cardiac murmur effects analyzed, the performance of the classifiers in cascade shown the best accuracy for human identification from ECG-S, minimizing the impact of variability generated on ECG-S by cardiac murmurs diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assadi, I., Charef, A., Mentouri, F., El-bey, R.A.: QRS Complex Based Human Identification, pp. 248–252 (2015)

    Google Scholar 

  2. Becerra, M.A., et al.: Exploratory study of the effects of cardiac murmurs on electrocardiographic-signal-based biometric systems. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A.J. (eds.) IDEAL 2018. LNCS, vol. 11314, pp. 410–418. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03493-1_43

    Chapter  Google Scholar 

  3. Becerra, M.A., Orrego, D.A., Delgado-Trejos, E.: Adaptive neuro-fuzzy inference system for acoustic analysis of 4-channel phonocardiograms using empirical mode decomposition. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 969–972. IEEE, July 2013. https://doi.org/10.1109/EMBC.2013.6609664

  4. Belgacem, N., Fournier, R., Nait-Ali, A., Bereksi-Reguig, F.: A novel biometric authentication approach using ECG and EMG signals. J. Med. Eng. Technol. 39(4), 226–238 (2015). https://doi.org/10.3109/03091902.2015.1021429

    Article  Google Scholar 

  5. Bhatnagar, S.: Cooperative biometric multimodal approach for identification. In: Satapathy, S.C., Joshi, A. (eds.) ICTIS 2017. SIST, vol. 83, pp. 13–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63673-3_2

    Chapter  Google Scholar 

  6. Bugdol, M.D., Mitas, A.W.: Multimodal biometric system combining ECG and sound signals. Pattern Recogn. Lett. 38, 107–112 (2014). https://doi.org/10.1016/J.PATREC.2013.11.014

    Article  Google Scholar 

  7. Chun, S.Y.: Single Pulse ECG-based Small Scale User Authentication using Guided Filtering

    Google Scholar 

  8. Dar, M.N., Akram, M.U., Shaukat, A., Khan, M.A.: ECG based biometric identification for population with normal and cardiac anomalies using hybrid HRV and DWT features. In: 2015 5th International Conference on IT Convergence and Security, ICITCS 2015 - Proceedings (2015). https://doi.org/10.1109/ICITCS.2015.7292977

  9. Duffy, V.G. (ed.): DHM 2017. LNCS, vol. 10287. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58466-9

    Book  Google Scholar 

  10. Elgendi, M., Eskofier, B., Abbott, D.: Fast T wave detection calibrated by clinical knowledge with annotation of P and T waves. Sensors 15(7), 17693–17714 (2015). https://doi.org/10.3390/s150717693

    Article  Google Scholar 

  11. Elhoseny, M., Essa, E., Elkhateb, A., Hassanien, A.E., Hamad, A.: Cascade multimodal biometric system using fingerprint and iris patterns. In: Hassanien, A.E., Shaalan, K., Gaber, T., Tolba, M.F. (eds.) AISI 2017. AISC, vol. 639, pp. 590–599. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64861-3_55

    Chapter  Google Scholar 

  12. Ferdinando, H., Seppänen, T., Alasaarela, E.: Bivariate Empirical Mode Decomposition for ECG - based Biometric Identification with Emotional Data, pp. 450–453 (2017)

    Google Scholar 

  13. Hejazi, M., Al-Haddad, S.A., Hashim, S.J., Aziz, A.F.A., Singh, Y.P.: Feature level fusion for biometric verification with two-lead ECG signals. In: Proceeding - 2016 IEEE 12th International Colloquium on Signal Processing and its Applications, CSPA 2016, pp. 54–59, March 2016. https://doi.org/10.1109/CSPA.2016.7515803

  14. Hejazi, M., Al-Haddad, S.A., Singh, Y.P., Hashim, S.J., Abdul Aziz, A.F.: ECG biometric authentication based on non-fiducial approach using kernel methods. Digital Signal Process.: Rev. J. 52, 72–86 (2016). https://doi.org/10.1016/j.dsp.2016.02.008

    Article  Google Scholar 

  15. da Silva, H.P., Carreiras, C., Lourenco, A., Fred, A., das Neves, R.C., Ferreira, R.: Off-the-person electrocardiography: performance assessment and clinical correlation. Health Technol. 4, 309–318 (2015)

    Article  Google Scholar 

  16. Jung, W.H., Lee, S.G.: ECG identification based on non-fiducial feature extraction using window removal method. Appl. Sci. 7(12), 1205 (2017). https://doi.org/10.3390/app7111205. http://www.mdpi.com/2076-3417/7/11/1205

    Article  Google Scholar 

  17. Kanchan, T., Krishan, K.: Loss of fingerprints: forensic implications. Egypt. J. Forensic Sci. 8(1), 19 (2018). https://doi.org/10.1186/s41935-018-0051-0

    Article  Google Scholar 

  18. Martinez-Diaz, M., Fierrez, J., Galbally, J., Ortega-Garcia, J.: An evaluation of indirect attacks and countermeasures in fingerprint verification systems. Pattern Recognit. Lett. 32(12), 1643–1651 (2011). https://doi.org/10.1016/J.PATREC.2011.04.005

    Article  Google Scholar 

  19. Moreno-Revelo, M., Ortega-Adarme, M., Peluffo-Ordoñez, D.H., Alvarez-Uribe, K.C., Becerra, M.A.: Comparison among physiological signals for biometric identification. In: Yin, H., Gao, Y., Chen, S., Wen, Y., Cai, G., Gu, T., Du, J., Tallón-Ballesteros, A.J., Zhang, M. (eds.) IDEAL 2017. LNCS, vol. 10585, pp. 436–443. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68935-7_47

    Chapter  Google Scholar 

  20. Murillo-Escobar, M., Cruz-Hernández, C., Abundiz-Pérez, F., López-Gutiérrez, R.: A robust embedded biometric authentication system based on fingerprint and chaotic encryption. Expert Syst. Appl. 42(21), 8198–8211 (2015). https://doi.org/10.1016/j.eswa.2015.06.035

    Article  Google Scholar 

  21. Nawal, M., Sharma, M.K., Bundele, M.M.: Design and implementation of human identification through physical activity aware 12 lead ECG. In: 2016 International Conference on Recent Advances and Innovations in Engineering, ICRAIE 2016 (2017). https://doi.org/10.1109/ICRAIE.2016.7939536

  22. Odinaka, I., Lai, P.H., Kaplan, A.D., O’Sullivan, J.A., Sirevaag, E.J., Rohrbaugh, J.W.: ECG biometric recognition: a comparative analysis (2012). https://doi.org/10.1109/TIFS.2012.2215324

    Article  Google Scholar 

  23. Orrego, D., Becerra, M., Delgado-Trejos, E.: Dimensionality reduction based on fuzzy rough sets oriented to ischemia detection. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2012). https://doi.org/10.1109/EMBC.2012.6347186

  24. Pal, S., Mitra, M.: Increasing the accuracy of ECG based biometric analysis by data modelling. Measurement 45(7), 1927–1932 (2012). https://doi.org/10.1016/J.MEASUREMENT.2012.03.005

    Article  Google Scholar 

  25. Patro, K., Kumar, P.: Machine learning classification approaches for biometric recognition system using ECG signals. Eng. Sci. Technol. Rev. 10(6), 1–8 (2017). https://doi.org/10.25103/jestr.106.01

    Article  Google Scholar 

  26. Pinto, J., Cardoso, J., Lourenço, A., Carreiras, C.: Towards a continuous biometric system based on ECG signals acquired on the steering wheel. Sensors 17(10), 2228 (2017). https://doi.org/10.3390/s17102228. http://www.mdpi.com/1424-8220/17/10/2228

    Article  Google Scholar 

  27. Ramli, D.A., Hooi, M.Y., Chee, K.J.: Development of heartbeat detection kit for biometric authentication system. Procedia Comput. Sci. 96, 305–314 (2016). https://doi.org/10.1016/j.procs.2016.08.143

    Article  Google Scholar 

  28. Sidek, K.A., Khalil, I., Jelinek, H.F.: ECG biometric with abnormal cardiac conditions in remote monitoring system. IEEE Trans. Syst. Man Cybern.: Syst. 44(11), 1498–1509 (2014). https://doi.org/10.1109/TSMC.2014.2336842

    Article  Google Scholar 

  29. Song, W., Kim, T., Kim, H.C., Choi, J.H., Kong, H.J., Lee, S.R.: A finger-vein verification system using mean curvature. Pattern Recognit. Lett. 32(11), 1541–1547 (2011). https://doi.org/10.1016/J.PATREC.2011.04.021

    Article  Google Scholar 

  30. Tan, R., Perkowski, M.: Toward improving electrocardiogram (ECG) biometric verification using mobile sensors: a two-stage classifier approach. Sensors (Switzerland) 17(2) (2017). https://doi.org/10.3390/s17020410

    Article  Google Scholar 

  31. Tseng, K.K., Lee, D., Hurst, W., Lin, F.Y., Ip, W.H.: Frequency rank order statistic with unknown neural network for ECG identification system. In: Proceedings - 4th International Conference on Enterprise Systems: Advances in Enterprise Systems, ES 2016, pp. 160–167 (2017). https://doi.org/10.1109/ES.2016.27

  32. Wahabi, S., Pouryayevali, S., Hari, S., Hatzinakos, D.: On evaluating ECG biometric systems: session-dependence and body posture. IEEE Trans. Inf. Forensics Secur. 9(11), 2002–2013 (2014). https://doi.org/10.1109/TIFS.2014.2360430

    Article  Google Scholar 

  33. Zhang, Y., Wu, J.: Practical human authentication method based on piecewise corrected Electrocardiogram. In: Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS, vol. 61571268, pp. 300–303 (2017). https://doi.org/10.1109/ICSESS.2016.7883071

  34. Zhao, Z., Yang, L.: ECG identification based on matching pursuit. In: 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), pp. 721–724. IEEE, October 2011. https://doi.org/10.1109/BMEI.2011.6098470

Download references

Acknowledgment

The authors acknowledge to the research project titled “Desarrollo de una metodología de visualización interactiva y eficaz de información en Big Data” supported by Agreement No. 180 November 1st, 2016 by VIPRI from Universidad de Nariño. Besides, acknowledge to SDAS Research Group and to the project P17202 supported by Instituto Tecnologico Metropolitano ITM of Medellin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Becerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duque-Mejía, C. et al. (2019). Cardiac Murmur Effects on Automatic Segmentation of ECG Signals for Biometric Identification: Preliminary Study. In: Nguyen, N., Gaol, F., Hong, TP., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2019. Lecture Notes in Computer Science(), vol 11431. Springer, Cham. https://doi.org/10.1007/978-3-030-14799-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14799-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14798-3

  • Online ISBN: 978-3-030-14799-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics