Skip to main content

Histone Methylome of the Human Parasite Schistosoma Mansoni

  • Chapter
  • First Online:
The DNA, RNA, and Histone Methylomes

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

The trematode Schistosoma mansoni belongs to the group of digenetic parasites which need obligatory multiple hosts to develop. They transit between hosts as free-swimming stages in fresh water ecosystems. They generate phenotypically different developmental stages throughout their lifecycle and receive hugly heterogenous environmental cues. Each developmental stage is characterized by specific posttranslational histone modifications, in particular methylations. The combination of the different marks result in stage specific chromatin structure that is essential for development, sexual biology and pathogenesis. Histone methylation also responds to environmental changes and seems to be involved in an adaptive reponse or adjustment to the environment. Histone methylation thus represent promising source of therapeutic targets. In this chapter we will present the state-of-the-art of how the dynamics of histone methylation are involved in multiple factors of the schistosome’s development, as well as what is still lacking for better understanding it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballante F, Reddy DR, Zhou NJ et al (2017) Structural insights of SmKDAC8 inhibitors: targeting Schistosoma epigenetics through a combined structure-based 3D QSAR, in vitro and synthesis strategy. Bioorg Med Chem 25:2105–2132

    Article  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  Google Scholar 

  • Bao B, He Y, Tang D et al (2017) Inhibition of H3K27me3 histone demethylase activity prevents the proliferative regeneration of Zebrafish lateral line Neuromasts. Front Mol Neurosci 10:51

    Article  Google Scholar 

  • Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  Google Scholar 

  • Basch PF (1991) Schistosomes: development, reproduction, and host relations. Oxford University Press, New York

    Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  CAS  Google Scholar 

  • Berriman M, Haas BJ, LoVerde PT et al (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460:352–358

    Article  CAS  Google Scholar 

  • Boissier J, Grech-Angelini S, Webster BL et al (2016) Outbreak of urogenital schistosomiasis in Corsica (France): an epidemiological case study. Lancet Infect Dis 16:971–979

    Article  Google Scholar 

  • Brindley PJ, Sher A (1987) The chemotherapeutic effect of praziquantel against Schistosoma mansoni is dependent on host antibody response. J Immunol 139:215–220

    Google Scholar 

  • Cabezas-Cruz A, Lancelot J, Caby S et al (2014) Epigenetic control of gene function in schistosomes: a source of therapeutic targets? Front Genet 5:317

    Article  Google Scholar 

  • Chandler VL (2007) Paramutation: from maize to mice. Cell 128:641–645

    Article  CAS  Google Scholar 

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128

    Article  CAS  Google Scholar 

  • Chevalier FD, Le Clec’h W, Eng N et al (2016) Independent origins of loss-of-function mutations conferring oxamniquine resistance in a Brazilian schistosome population. Int J Parasitol 46:417–424

    Article  CAS  Google Scholar 

  • Collins JJ, Wang B, Lambrus BG et al (2013) Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature 494:476–479

    Article  CAS  Google Scholar 

  • Cosseau C, Grunau C (2011) Native chromatin immunoprecipitation. Methods Mol Biol Clifton NJ 791:195–212

    Article  CAS  Google Scholar 

  • Cosseau C, Wolkenhauer O, Padalino G et al (2017) (Epi)genetic inheritance in Schistosoma mansoni: a systems approach. Trends Parasitol 33:285–294

    Article  Google Scholar 

  • de Augusto RC, Tetreau G, Chan P et al (2017) Double impact: natural molluscicide for schistosomiasis vector control also impedes development of Schistosoma mansoni cercariae into adult parasites. PLoS Negl Trop Dis 11:e0005789

    Article  Google Scholar 

  • Dong X, Weng Z (2013) The correlation between histone modifications and gene expression. Epigenomics 5:113–116

    Article  CAS  Google Scholar 

  • Evertts AG, Manning AL, Wang X et al (2013) H4K20 methylation regulates quiescence and chromatin compaction. Mol Biol Cell 24:3025–3037

    Article  CAS  Google Scholar 

  • Fneich S, Théron A, Cosseau C et al (2016) Epigenetic origin of adaptive phenotypic variants in the human blood fluke Schistosoma mansoni. Epigenetics Chromatin 9:27

    Article  Google Scholar 

  • Gómez-Díaz E, Jordà M, Peinado MA et al (2012) Epigenetics of host–pathogen interactions: the road ahead and the road behind. PLoS Pathog 8:e1003007

    Article  Google Scholar 

  • Gu SG, Fire A (2010) Partitioning the C. elegans genome by nucleosome modification, occupancy, and positioning. Chromosoma 119:73–87

    Article  CAS  Google Scholar 

  • Harikumar A, Meshorer E (2015) Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep 16:1609–1619

    Article  CAS  Google Scholar 

  • Howe FS, Fischl H, Murray SC et al (2017) Is H3K4me3 instructive for transcription activation? BioEssays News Rev Mol Cell Dev Biol 39:1–12

    Article  CAS  Google Scholar 

  • Jansma WB, Rogers SH, Liu CL et al (1977) Experimentally produced resistance of Schistosoma mansoni to hycanthone. Am J Trop Med Hyg 26:926–936

    Article  CAS  Google Scholar 

  • Jørgensen S, Schotta G, Sørensen CS (2013) Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res 41:2797–2806

    Article  Google Scholar 

  • Kharchenko PV, Alekseyenko AA, Schwartz YB et al (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471:480–485

    Article  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  Google Scholar 

  • Landt SG, Marinov GK, Kundaje A et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22:1813–1831

    Article  CAS  Google Scholar 

  • Lepesant JMJ, Cosseau C, Boissier J et al (2012) Chromatin structural changes around satellite repeats on the female sex chromosome in Schistosoma mansoni and their possible role in sex chromosome emergence. Genome Biol 13:R14

    Article  CAS  Google Scholar 

  • Lindsay S (2007) Chromatin control of gene expression: the simplest model. Biophys J 92:1113

    Article  CAS  Google Scholar 

  • Lu Z, Sessler F, Holroyd N et al (2016) Schistosome sex matters: a deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay. Sci Rep 6:31150

    Article  CAS  Google Scholar 

  • Lv X, Han Z, Chen H et al (2016) A positive role for polycomb in transcriptional regulation via H4K20me1. Cell Res 26:529–542

    Article  CAS  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  CAS  Google Scholar 

  • Nicoglou A, Merlin F (2017) Epigenetics: a way to bridge the gap between biological fields. Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci 66:73–82

    Article  Google Scholar 

  • Nightingale KP, O’Neill LP, Turner BM (2006) Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 16:125–136

    Article  CAS  Google Scholar 

  • Oda H, Okamoto I, Murphy N et al (2009) Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol Cell Biol 29:2278–2295

    Article  CAS  Google Scholar 

  • Padalino G, Ferla S, Brancale A et al (2018) Combining bioinformatics, cheminformatics, functional genomics and whole organism approaches for identifying epigenetic drug targets in Schistosoma mansoni. Int J Parasitol Drugs Drug Resist 8:559–570

    Article  Google Scholar 

  • Pellegrino J, Katz N, Oliveira CA (1969) Further clinical trials with hycanthone, a new antischistosomal agent. Am J Trop Med Hyg 18:924–929

    Article  Google Scholar 

  • Pereira ASA, Amaral MS, Vasconcelos EJR et al (2018) Inhibition of histone methyltransferase EZH2 in Schistosoma mansoni in vitro by GSK343 reduces egg laying and decreases the expression of genes implicated in DNA replication and noncoding RNA metabolism. PLoS Negl Trop Dis 12:e0006873

    Article  Google Scholar 

  • Perrin C, Lepesant JMJ, Roger E et al (2013) Schistosoma mansoni Mucin gene (SmPoMuc) expression: epigenetic control to shape adaptation to a new host. PLoS Pathog 9:e1003571

    Article  CAS  Google Scholar 

  • Picard MAL, Boissier J, Roquis D et al (2016) Sex-biased transcriptome of Schistosoma mansoni: host-parasite interaction, genetic determinants and epigenetic regulators are associated with sexual differentiation. PLoS Negl Trop Dis 10:e0004930

    Article  Google Scholar 

  • Protasio AV, Tsai IJ, Babbage A et al (2012) A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis 6:e1455

    Article  CAS  Google Scholar 

  • Roquis D, Lepesant JMJ, Villafan E et al (2014) Exposure to hycanthone alters chromatin structure around specific gene functions and specific repeats in Schistosoma mansoni. Front Genet 5:207

    Article  Google Scholar 

  • Roquis D, Lepesant JMJ, Picard MAL et al (2015) The epigenome of Schistosoma mansoni provides insight about how Cercariae poise transcription until infection. PLoS Negl Trop Dis 9:e0003853

    Article  Google Scholar 

  • Roquis D, Rognon A, Chaparro C et al (2016) Frequency and mitotic heritability of epimutations in Schistosoma mansoni. Mol Ecol 25:1741–1758

    Article  CAS  Google Scholar 

  • Roquis D, Taudt A, Padalino G et al (2018) Histone methylation changes are required for life cycle progression in the human parasite Schistosoma mansoni. PLoS Pathog 14:e1007066

    Article  Google Scholar 

  • Rosi D, Peruzzotti G, Dennis EW et al (1965) A new, active metabolite of ‘Miracil D’. Nature 208:1005–1006

    Article  CAS  Google Scholar 

  • Steinmann P, Keiser J, Bos R et al (2006) Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6:411–425

    Article  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  Google Scholar 

  • Taube JH, Barton MC (2006) Chromatin and regulation of gene expression. In: Ma J (ed) Gene expression and regulation. Springer, New York, NY, pp 95–109

    Chapter  Google Scholar 

  • Taudt A, Nguyen MA, Heinig M et al (2016) chromstaR: tracking combinatorial chromatin state dynamics in space and time. https://doi.org/10.1101/038612

  • Valentim CLL, Cioli D, Chevalier FD et al (2013) Genetic and molecular basis of drug resistance and species-specific drug action in Schistosome parasites. Science 342:1385–1389

    Article  CAS  Google Scholar 

  • Vielle A, Lang J, Dong Y et al (2012) H4K20me1 contributes to downregulation of X-linked genes for C. elegans dosage compensation. PLoS Genet 8:e1002933

    Article  CAS  Google Scholar 

  • Wang Z, Zang C, Rosenfeld JA et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903

    Article  CAS  Google Scholar 

  • Wang B, Collins JJ, Newmark PA (2013) Functional genomic characterization of neoblast-like stem cells in larval Schistosoma mansoni. elife 2:e00768

    Article  Google Scholar 

  • Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20:259–266

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Augusto, R.d.C., Cosseau, C., Grunau, C. (2019). Histone Methylome of the Human Parasite Schistosoma Mansoni . In: Jurga, S., Barciszewski, J. (eds) The DNA, RNA, and Histone Methylomes. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-14792-1_24

Download citation

Publish with us

Policies and ethics