Skip to main content

Influence of the Medium on Performance

  • Chapter
  • First Online:
  • 2255 Accesses

Abstract

High viscosities (low Reynolds numbers) impair the pump performance. Liquids with up to ν = 3000 mm2/s (3000 cSt) can be pumped with centrifugal pumps, but efficiencies drop to very low levels which make the operation highly uneconomic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term “oil” in the following text is meant to include all highly viscous fluids.

  2. 2.

    This equation covers the whole range from laminar to fully turbulent flow.

  3. 3.

    This can be verified by inserting into Eq. (T13.2.1) Q ~ n × d3 and H ~ n2 × d2 and \( Re\, \text{~} \, n \times d^{2}/\nu \) according to the similarity laws listed in Table 3.4.

  4. 4.

    Compare this process to water films forming on the blades of wet steam turbines.

  5. 5.

    In single-phase flow these relations are modified by the Reynolds-dependent losses. In turbulent flow the effect is small (Chap. 3.10); in laminar flow the losses increase considerably as discussed in Chap. 13.1.

  6. 6.

    Maximum tip speed in these tests was 86 m/s. The first group of 8 stages had impeller diameters of 250 mm, the last 5 stages were 232 mm.

  7. 7.

    In [38] a (quite unrealistic) exponent of 2.46 for the specific speed was derived from tests with nq = 27 and 30. Considering the scatter inherent to this type of measurement, it appears unwise to attempt on so narrow a test range to determine an exponent for extrapolation to situations outside the tested range. The calculations in [41] produced a more plausible exponent for nq.

  8. 8.

    Equation (T13.5.14) was derived from a graph in [49]; it is valid for particle diameters greater than 0.5 mm. With smaller particles the critical velocity is lower than predicted from Eq. (T13.5.14).

References

  1. Hergt, P., et al.: Verlustanalyse an einer Kreiselpumpe auf der Basis von Messungen bei hoher Viskosität des Fördermediums. VDI Ber. 424 (1981)

    Google Scholar 

  2. Stoffel, B., et al.: Untersuchungen von Einzelverlusten in Kreiselpumpen bei viskosen Flüssigkeiten. Pumpentagung Karlsruhe, K10 (1978)

    Google Scholar 

  3. Gülich, J.F.: Pumping highly viscous fluids with centrifugal pumps. World Pumps. 395/396, Aug/Sept (1999)

    Google Scholar 

  4. Holzenberger, K.: Vergleich von zwei Umrechnungsverfahren für die Kennlinien von Kreiselpumpen bei der Förderung zäher Flüssigkeiten. KSB. Techn. Ber. 25 (1988)

    Google Scholar 

  5. Mollenkopf, G.: Einfluß der Zähigkeit des Fördermediums auf das Betriebsverhalten von Kreiselpumpen unterschiedlicher spezifischer Schnelläufigkeit. Pumpentagung Karlsruhe, K10 (1978)

    Google Scholar 

  6. Hamkins, C.P., et al.: Prediction of viscosity effects in centrifugal pumps by consideration of individual losses. ImechE paper C112/87, 207–217 (1987)

    Google Scholar 

  7. Li Wen, G.: The “sudden-rising head” effect in centrifugal oil pumps. World Pumps 409, 34–36 (2000)

    Google Scholar 

  8. Saxena, S.V., et al.: Ermittlung von Korrekturfaktoren für Hochleistungs-Pipeline-Kreiselpumpen beim Fördern von Mineralölen mit erhöhter Viskosität. Pumpentagung Karlsruhe C, 7–3 (1996)

    Google Scholar 

  9. Gülich, J.F.: Effect of Reynolds-number and surface roughness on the efficiency of centrifugal pumps. ASME. J. Fluids. Eng. 125(4), 670–679 (2003)

    Article  Google Scholar 

  10. Baker, O.: Design of pipe lines for simultaneous oil and gas flow. Oil. Gas. J. 26 (1954)

    Google Scholar 

  11. Collier, J., Thome, J.R.: Convective Boiling and Condensation, 3rd edn. Clarendon Press, Oxford (1996)

    Google Scholar 

  12. Taitel, Y., Dukler, A.E.: A model for predicting flow regime transitions in horizontal and near-horizontal gas-liquid flow. AIChE J. 22, 47–55 (2003)

    Article  Google Scholar 

  13. Bertola, V. (ed.): Modelling and Experimentation in Two-phase Flow. Springer, Wien (2004)

    Google Scholar 

  14. Patel, B.R., Runstadler, P.W.: Investigation into two-phase flow behavior of centrifugal pumps. Polyphase flow in turbomachinery. ASME. 79–100 (1978)

    Google Scholar 

  15. Kecke, H.J.: Zweiphasenströmung bei Radialkreiselpumpen. Pumpentagung Karlsruhe. A, 1–3 (1996)

    Google Scholar 

  16. Tillack, P.: Förderverhalten von Kreiselpumpen bei viskosen, gasbeladenen Flüssigkeiten. Diss. TU Kaiserslautern, (1998)

    Google Scholar 

  17. Kosmowski, I., Hergt, P.: Förderung gasbeladener Medien mit Hilfe von Normal- und Sonderausführungen von Kreiselpumpen. KSB. Techn. Ber. 26 (1990)

    Google Scholar 

  18. Sauer, M.: Einfluss der Zuströmung auf das Förderverhalten von Kreiselpumpen radialer Bauart bei Flüssigkeits-/Gasförderung. Diss. TU Kaiserslautern, (2002)

    Google Scholar 

  19. Turpin, J.L., Lee, J.F., Bearden, J.L.: Gas-liquid flow through centrifugal pump—correlation of data. In: Proceedings of 3rd International Pump Symposium, Texas A&M, 1986, pp. 13–20

    Google Scholar 

  20. Hench, J.E., Johnston, J.P.: Two-dimensional diffuser performance with subsonic, two-phase, air-water flow. ASME. J. Basic. Engng. 94, 105–121 (1972 March)

    Google Scholar 

  21. Thum, D.: Untersuchung von Homogenisierungseinrichtugen auf das Förderverhalten radialer Kreiselpumpen bei gasbeladenen Strömungen. Diss. TU Kaiserslautern (2007)

    Google Scholar 

  22. Brenne, L., et al.: Performance evaluation of a centrifugal compressor operating under wet gas conditions. In: Proceedings of the 34th Turbomachinery Symposium, pp. 111–120 (2005)

    Google Scholar 

  23. Nguyen, D.L.: Sonic velocity in two-phase systems. Int. J. Multiphase. Flow. 7, 331–320 (1981)

    Article  Google Scholar 

  24. Gülich, J.F.: Energierückgewinnung mit Pumpen im Turbinenbetrieb bei Expansion von Zweiphasengemischen. Techn. Rundschau. Sulzer. 3, 87–91 (1981)

    Google Scholar 

  25. Florjancic, D.: Einfluß von Gas- und Luftzuführung auf das Betriebsverhalten ein- und mehrstufiger Pumpen. Techn. Rundschau. Sulzer. Forschungsheft. 35–44 (1970)

    Google Scholar 

  26. Murakami, M., Minemura, K.: Effects of entrained air on the performance of centrifugal and axial pumps. Memoires Faculty Eng. Nagoya Univ. 124, 23–1 (1971)

    Google Scholar 

  27. Pessoa, R., Prado, M.: Two-phase flow performance for electrical submersible pump stages. SPE Prod. Facil. 18, 13–27 (2003)

    Article  Google Scholar 

  28. Bratu, C.: Rotodynamic two-phase pump performance. Soc. Petroleum. Eng. SPE. 28516, 555–567 (1994)

    Google Scholar 

  29. Bratu, C.: Multiphase production systems. OMAE 1996. In: 15th International Conference Offshore Mechanics, Florence (1996)

    Google Scholar 

  30. Arnaudau, P.: Development of a two-phase oil pumping system, Poseidon project. In: Offshore Technology Conference OTC 5648, Houston (1988)

    Google Scholar 

  31. Arnaudau, P., Bratu, C.: Transport of unprocessed oil and gas in multiphase pumps. BHRA Seminar on Multiphase Pumping Technology, Cranfield, June 16 (1988)

    Google Scholar 

  32. Gié, P., et al.: Poseidon multiphase pump: field test results. Offshore. Tech. Conf. OTC. 7037(4), 489–501 (1992)

    Google Scholar 

  33. Gülich, J.F.: Apparatus and method for mixing, measuring and forwarding a multiphase gas mixture. US Patent 5,841,020, (1998)

    Google Scholar 

  34. Gopalakrishnan, S.: Power recovery turbines for the process industry. In: 3rd International Pumping Symposium, Houston (1986)

    Google Scholar 

  35. Hamkins, C.P., et al.: Pumps as energy recovery turbines with two-phase flow. In: ASME Pumping Machinery Symposium, San Diego (1989)

    Google Scholar 

  36. Gülich, J.F.: Energierückgewinnung bei der Expansion von Zweiphasengemischen. In: Pumpen als Turbinen. Faragallah, Sulzbach, (1993)

    Google Scholar 

  37. Weber, M.: Strömungsfördertechnik. Krauskopf, Mainz (1973)

    Google Scholar 

  38. Holzenberger, K.: Energiebedarf von Kreiselpumpen beim hydraulischen Feststofftransport. VDI. Ber. 424, 89–98 (1981)

    Google Scholar 

  39. Cave, I.: Effects of suspended solids on the performance of centrifugal pumps. Hydrotransport 4, Paper H 3, BHRA Fluids Engineering, (1976)

    Google Scholar 

  40. Gahlot, et al.: Effect of density, size distribution and concentration of solid on the characteristics of centrifugal pumps. ASME. J. Fluids. Engng. 114, 386–389 (1992)

    Google Scholar 

  41. Gneipel, G., et al.: Berechnung der Energiedifferenzzahlen von Kreiselpumpen bei der Förderung von heterogenen, grob-dispersen Flüssigkeits-Feststoff-Gemischen. Pumpentagung Karlsruhe. A, 1–1 (1996)

    Google Scholar 

  42. Kreuzfeld, G.: Berechnung der Zweiphasenströmung in Kreiselpumpenbauteilen. Diss. TU Dresden (1999)

    Google Scholar 

  43. MatouŠek, V.: Flow in Mechanism of Sand-water Mixtures Pipelines. University Press, Delft (1997)

    Google Scholar 

  44. Gneipel, G.: Berechnung der Partikelbahnen bei der Förderung von Fluid-Feststoffgemischen. Diss. B Bergakademie Freiberg (1990)

    Google Scholar 

  45. Gandhi, B.K., Singh, S.N., Seshadri, V.: Performance characteristics of centrifugal slurry pumps. ASME. J. Fluids. Eng. 123, 271–280 (2001)

    Article  Google Scholar 

  46. Engin, T., Gur, M.: Comparative evaluation of some existing correlations to predict head degradation of centrifugal slurry pumps. ASME. J. Fluids. Eng. 123, 149–157 (2003)

    Article  Google Scholar 

  47. van den Berg, C.H., Vercruijsse, P.M., Van den Broeck, M.: The hydraulic transport of highly concentrated sand-water mixtures using large pumps and pipeline diameters. Hydrotransport. 14, 445–453 (1999)

    Google Scholar 

  48. Gneipel, G., Tuong, P.N.: Stoß- und Reibungsverluste beim hydraulischen Feststofftransport und deren Einfluß auf die Verminderung der Druckzahl der Pumpe. In: 10th Intnl Conf on Hydromechanisation, Zakopane (1998)

    Google Scholar 

  49. Weber, M.: Grundlagen der hydraulischen und pneumatischen Förderung. VDI Ber. 371, 23–29 (1980)

    Google Scholar 

  50. Radke, M., et al.: Untersuchung kostenbestimmender Faktoren bei Kreiselpumpen in Rauchgasentschwefelungsanlagen. VGB Kraftwerkstech. 71, 455–461 (1991)

    MathSciNet  Google Scholar 

  51. Verhoeven, J.: Energy recovery in reverse running pumps. Pumpentagung Karlsruhe. B1 (1992)

    Google Scholar 

  52. Bischof, F.: Experimentelle Untersuchungen an einer Kreiselpumpe zur Feststofförderung. Diss. TU Braunschweig (1983)

    Google Scholar 

  53. Radke, M., et al.: Neue konstruktive Entwicklungen für Kreiselpumpen in Rauchgasentschwefelungsanlagen. Konstruktion 42, 53–60 (1990)

    Google Scholar 

  54. Wilson, K.C., Addie, G.R., Sellgren, A., Clift, R.: Slurry transport using centrifugal pumps, 2nd ed. Blackie Academic and Professional, London. ISBN 0 7514 0408 X (1997)

    Google Scholar 

  55. Hellmann, D.H.: Pumps for multiphase boosting. In: 2nd International Conference on Pumps and Fans, Beijing, paper IL 4 (1995)

    Google Scholar 

  56. Govier, G.W., Aziz, K.: The Flow of Complex Mixtures in Pipes. Van Nostrand Reinhold, New York (1972)

    Google Scholar 

  57. Brennen, C.E.: Fundamentals of Multiphase Flow. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  58. Zhu, J., et al.: Experimental study and mechanistic modeling of pressure surging in electrical submersible pump. J. Nat. Gas Sci. Eng. 45, 625–636 (2017)

    Article  Google Scholar 

  59. Zhu, J., Zhang, H.Q.: Numerical study on electrical submersible pump two-phase performance and bubble size model. SPE production & operations Aug. 2017, 267–278

    Google Scholar 

  60. Zhu, J.: Experiments, CFD simulation and modelling of ESP performance under gassy conditions. Ph.D. Thesis University of Tulsa (2017)

    Google Scholar 

  61. Bellary, S.A., et al.: Effects of crude oil-water emulsions at various water cuts on the performance of a centrifugal pump. Int. J. Oil Gas Coal Technol. 1, 71–88 (2017)

    Article  Google Scholar 

  62. Zhu, J., et al.: Surfactant effect on air/water flow in a multistage electrical submersible pump. Experimental Thermal and Fluid Science (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Friedrich Gülich .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gülich, J.F. (2020). Influence of the Medium on Performance. In: Centrifugal Pumps. Springer, Cham. https://doi.org/10.1007/978-3-030-14788-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14788-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14787-7

  • Online ISBN: 978-3-030-14788-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics