Skip to main content

Noise and Vibrations

  • Chapter
  • First Online:
Centrifugal Pumps
  • 2411 Accesses

Abstract

As explained in Chap. 5, the flow at the impeller outlet is non-uniform. The diffuser vanes or volute cutwaters are thus approached by an unsteady flow. The flow in the stator acts back on the velocity field in the impeller. The related phenomena are called “rotor/stator interaction” (RSI). As a consequence of the RSI, hydraulic excitation forces are generated. These give rise to pressure pulsations, mechanical vibrations and alternating stresses in various pump components. The vibrations transmitted to the foundations spread as solid-borne noise throughout the building. The pressure pulsations excite the pump casing to vibrations. They travel as fluid-borne noise through the piping system, where they generate vibrations of the pipe walls. The vibrating walls and structures radiate air-borne noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Examples for the influence of the system on pressure pulsations can be found in [B.20]. The topic is discussed in more detail also in Chap. 10.12.3.

  2. 2.

    The measurement is done according to DIN 45635, [N.19] and ISO standards.

  3. 3.

    As per [N.25] high-energy pumps are defined as pumps whose heads per stage exceeds. \( \frac{{{\text{H}}_{\text{st,opt}} }}{{{\text{H}}_{\text{Ref}} }} > 275\left( {\frac{{{\text{n}}_{\text{q,Ref}} }}{{{\text{n}}_{\text{q}} }}} \right)^{1.85} \left( {\frac{{\uprho_{\text{Ref}} }}{\uprho}} \right)\quad {\text{with}}\,{\text{n}}_{\text{q,Ref}} = 25,{\text{H}}_{\text{Ref}} = 1{\text{m}}\,{\text{and}}\,\uprho_{\text{Ref}} = 100 0\,{\text{kg/m}}^{ 3} \). The formula is valid for 25 < nq < 67. Below nq = 25 the limit is Hst,opt = 275 m; no limits are defined for the range above nq = 67. The topic is discussed in more detail in Chap. 15.4 where three quality classes are defined.

  4. 4.

    The definition of the total head ψtot is analogous to Eq. (8.9).

  5. 5.

    It may be noted that the tests in [125] were done under conditions which are not representative for high-head pumps which should not be designed with d3* = 1.01, vane combinations leading to m = 1 and usually are not required to operate at flows as high as q* > 1.5.

  6. 6.

    The dimensionless time is defined by t* = t × fn.

  7. 7.

    An example for this type of damping is given in [86]: The investigated system of a burner and fan was susceptible to self-excited vibrations below a specific flow rate. When testing fans with differently steep characteristics, the stable operation range increased with the steepness of the Q-H-curve.

  8. 8.

    From the wealth of literature on flow-induced vibrations, [9, 65] are quoted.

  9. 9.

    This section is largely based on information given in [89].

  10. 10.

    The possible interaction between acoustic waves and unsteady flow in a pump could be verified experimentally by generating pressure pulsations in a system by means of a device (e.g. piston or spark) and measuring their impact on the flow patterns in the diffuser and impeller (e.g. by laser velocimetry).

  11. 11.

    If the excitation mechanism were caused by unbalanced mass forces, the mechanical vibration would be out of phase with the excitation.

References

  1. Adams, M.L.: Rotating Machinery Vibration. Marcel Dekker Inc (2001)

    Google Scholar 

  2. Alford, J.S.: Protecting turbomachinery from self-excited rotor whirl. ASME J. Eng. Power 87, 333–344 (1965)

    Google Scholar 

  3. Amoser, M.: Strömungsfelder und Radialkräfte an Labyrinthdichtungen hydraulischer Strömungsmaschinen. Diss. ETH. Nr. 11150 (1995)

    Google Scholar 

  4. Arndt, N., et al.: Unsteady diffuser vane pressure and impeller wake measurements in a centrifugal pump. In: Proceedings of 8th Conference on Turbomachinery, Budapest, pp. 49–56 (1987)

    Google Scholar 

  5. Au-Yang, M. K.: Flow-induced Vibrations of Power and Process Plant Components. Professional Engineering Publishing Ltd (2001)

    Google Scholar 

  6. Berten, S.: Hydrodynamics of high specific power pumps for off-design operating conditions. Dissertation, EPF, Lausanne (2010)

    Google Scholar 

  7. Berten, S., et al.: Experimental Investigation of Flow Instabilities and Rotating Stall in a High-Energy Centrifugal Pump Stage. ASME. FEDSM (2009)

    Google Scholar 

  8. Blevins, R.D.: Formulas for Natural Frequency and Mode Shape (Reissue). Krieger, Malabar (1995)

    Google Scholar 

  9. Blevins, R.D.: Flow-Induced Vibrations (Reprinted 2nd edn.). Krieger Publishing Company, Malabar (2001)

    Google Scholar 

  10. Bolleter, U.: On blade passage tones of centrifugal pumps. Vibrations 4(3), 8–13 (1988)

    Google Scholar 

  11. Bolleter, U.: Generation and propagation of pressure pulsations in centrifugal pump systems. In: AECL Seminar on Acoustic Pulsations in Rotating Machinery, Toronto (1993)

    Google Scholar 

  12. Bolleter, U., et al.: Hydraulic and mechanical interactions of feedpump systems. EPRI Report TR-100990 (Sept 1992)

    Google Scholar 

  13. Bolleter, U., et al.: Rotordynamic modeling and testing of boiler feedpumps. EPRI Report. TR-100980 (Sept 1992)

    Google Scholar 

  14. Braun, O.: Part load flow in radial centrifugal pumps. Dissertation, EPF Lausanne (2009)

    Google Scholar 

  15. Brennen, C.E.: Hydrodynamics of Pumps. Concepts ETI, Norwich (1994)

    MATH  Google Scholar 

  16. Casey, V.M., et al.: Flow analysis in a pump diffuser. Part 2: validation of a CFD code for steady flow. ASME FED 227, 135–143 (1995)

    Google Scholar 

  17. Chen, Y.N.: Wasserdruckschwingungen in Spiralgehäusen von Speicherpumpen. Techn Rundschau Sulzer. Forschungsheft, 21–34 (1961)

    Google Scholar 

  18. Chen, Y.N., Beurer, P.: Strömungserregte Schwingungen an Platten infolge Karman’scher Wirbelstraßen. Pumpentagung, Karlsruhe (K6) (1973)

    Google Scholar 

  19. Chen, Y.N., Florjancic, D.: Vortex-induced resonance in a pipe system due to branching. IMech C109/75 (1975)

    Google Scholar 

  20. Chen, Y.N., et al.: Reduction of vibrations in a centrifugal pump hydraulic system, pp. 78–84. IAHR Karlsruhe (1979)

    Google Scholar 

  21. Childs, D.: Turbomachinery Rotordynamics. Wiley, New York (1993)

    Google Scholar 

  22. Childs, D.W., et al.: Annular honeycomb seal test results for leakage and rotordynamic coefficients. ASME Paper. 88-Trib-35

    Google Scholar 

  23. Cooper, P., et al.: Minimum continuous stable flow in centrifugal pumps. In: Proceedings of Symposium Power Plant Pumps, New Orleans, 1987 EPRI CS-5857 (1988)

    Google Scholar 

  24. Corbo, M.A., Stearns, C.F.: Practical design against pump pulsations. In: Proceedings of 22nd International Pump Users Symposium, pp. 137–177. Texas A&M (2005)

    Google Scholar 

  25. Cremer, R., Heckl, M.: Körperschall, 2nd edn. Springer, Berlin (1995)

    MATH  Google Scholar 

  26. Deeprose, W.M., et al.: Current industrial pump and fan fluid-borne noise level prediction. IMechE Paper. C251/77 43–50 (1977)

    Google Scholar 

  27. Domm, U., Dernedde, R.: Über eine Auswahlregel für die Lauf- und Leitschaufelzahl von Kreiselpumpen. KSB. Techn. Ber. 9 (1964)

    Google Scholar 

  28. Dörfler, P., Sick, M., Coutu, A.: Flow-Induced Pulsation and Vibrations in Hydroelectric Machinery. Springer, London (2013)

    Google Scholar 

  29. Dubas, M.: Über die Erregung infolge der Periodizität von Turbomaschinen. Ing. Archiv. 54, 413–426 (1984)

    Google Scholar 

  30. Ehrich, F.F.: Handbook of Rotordynamics. McGraw Hill, New York (1992)

    Google Scholar 

  31. Ehrich, F.F., Childs, D.: Self-excited vibration in high-performance turbomachinery. Mech. Eng. 106, 66–79 (1984)

    Google Scholar 

  32. Europump Leitfaden: Geräuschemission bei Kreiselpumpen (2002)

    Google Scholar 

  33. Florjancic, D.: Entwicklung der Speisepumpen und grossen mehrstufigen Pumpen für die Wasserversorgung. Tech. Rev. Sulzer. 4, 241–254 (1973)

    Google Scholar 

  34. Florjancic, S.: Annular seals of high energy centrifugal pumps: a new theory and full scale measurement of rotordynamic coefficients and hydraulic friction factors. Dissertation, ETH Zürich (1990)

    Google Scholar 

  35. Försching, H.W.: Grundlagen der Aeroelastik. Springer, Berlin (1974)

    MATH  Google Scholar 

  36. Freese, H.D.: Querkräfte in axial durchströmten Drosselspalten. Pumpentagung, Karlsruhe (K6) (1978)

    Google Scholar 

  37. Gaffal, K.: Innovatives, umweltfreundliches und wirtschaftliches Speisepumpenkonzept erprobt. VGB Kraftwerkstech. 73, 223–230 (1993)

    Google Scholar 

  38. Graf, K.: Spaltströmungsbedingte Kräfte an berührungslosen Dichtungen von hydraulischen und thermischen Turbomaschinen. Dissertation, ETH Nr. 9319 (1991)

    Google Scholar 

  39. Greitzer, E.M.: The stability of pumping systems. ASME J. Fluids Eng. 103, 193–242 (1981)

    Google Scholar 

  40. Guinzburg, A.: Rotordynamic forces generated by discharge to suction leakage flows in centrifugal pumps. California Institute of Technology Report E249.14 (1992)

    Google Scholar 

  41. Gülich, J.F.: European Patent EP 0224764 B1 (1989)

    Google Scholar 

  42. Gülich, J.F., et al.: Pump vibrations excited by cavitation. In: IMechE Conference on Fluid Machinery, The Hague (1990)

    Google Scholar 

  43. Gülich, J.F., et al.: Rotor dynamic and thermal deformation tests of high-speed boiler feedpumps. EPRI Report GS-7405 (July 1991)

    Google Scholar 

  44. Gülich, J.F., Bolleter, U.: Pressure pulsations in centrifugal pumps. ASME J. Vibr. Acoust. 114, 272–279 (1992)

    Google Scholar 

  45. Guo, S., Maruta, Y.: Experimental investigation on pressure fluctuations and vibration of the impeller in a centrifugal pump with vaned diffusers. JSME In. J. 48(1), 136–143 (2005)

    Google Scholar 

  46. Hartlen, R.T., et al.: Dynamic interaction between pump and piping system. In: AECL Seminar on Acoustic Pulsations in Rotating Machinery, Toronto (1993)

    Google Scholar 

  47. Heckl, M., Müller, H.A.: Taschenbuch der Technischen Akustik. Springer, Berlin (1975)

    Google Scholar 

  48. Hergt, P., Krieger, P.: Radialkräfte in Leitradpumpen. KSB. Techn. Ber. 32–39 (1973)

    Google Scholar 

  49. Hergt, P., et al.: Fluid dynamics of slurry pump impellers. In: 8th International Conference Transport and Sedimentation of Solids, Prague, D2-1 (1995)

    Google Scholar 

  50. Höller, K.: In “25 Jahre ASTRÖ”. Aströ, Graz (1979)

    Google Scholar 

  51. Kaiser, T., Osman, R., Dickau, R.: Analysis guide for variable frequency drives operated centrifugal pumps. Proceedings of the 24th International Pump Users Symposium, Texas A&M, pp. 81–106 (2008)

    Google Scholar 

  52. Kanki, H., et al.: Experimental research on the hydraulic excitation force on the pump shaft. ASME Paper 81-DET-71

    Google Scholar 

  53. Kaupert, K.A.: Unsteady Flow Fields in a High Specific Speed Centrifugal Impeller. Dissertation, ETH, Zürich (1997)

    Google Scholar 

  54. Kollmann, F.G.: Maschinenakustik. Grundlagen, Meßtechnik, Beeinflussung. 2. Aufl. Springer, Berlin (2000)

    Google Scholar 

  55. Krieger, P.: Wechselwirkungen von Laufrad und Gehäuse einer Einschaufelpumpe am Modell der instationären Strömung. Forsch. Ing. Wes. 54(6), 169–180 (1988)

    Google Scholar 

  56. Kündig, P.: Gestufte Labyrinthdichtungen hydraulischer Maschinen. Experimentelle Untersuchung der Leckage, der Reibung und der stationären Kräfte. Dissertation, ETH. Nr. 10366 (1993)

    Google Scholar 

  57. Kurtze, G.: Physik und Technik der Lärmbekämpfung. Braun, Karlsruhe (1964)

    MATH  Google Scholar 

  58. Kwong, A.H.M., Dowling, A.P.: Unsteady flow in diffusers. ASME J. Fluids Eng. 116, 843–847 (1994)

    Google Scholar 

  59. Lucas, M.J., et al.: Handbook of the Acoustic Characteristics of Turbomachinery Cavities. ASME Press, New York (1997)

    Google Scholar 

  60. Luce, T.W., et al.: A numerical and LDV investigation of unsteady pressure fields in the vaneless space downstream of a centrifugal impeller. ASME FEDSM97-3327 (1997)

    Google Scholar 

  61. Makay, E., Barret, J.A.: Changes in hydraulic component geometries greatly increased power plant availability and reduced maintenance cost: case histories. In: Proceedings of the 1st International Pump Symposium, Houston (1984)

    Google Scholar 

  62. Marscher, W.D.: Subsynchronous vibration in boiler feedpumps due to stable response to hydraulic forces at part-load. In: Proceedings of IMechE, vol. 202, pp. 167–175 (1988)

    Google Scholar 

  63. Meschkat, S.: Experimentelle Untersuchung der Auswirkung instationärer Rotor-Stator-Wechselwirkungen auf das Betriebsverhalten einer Spiralgehäusepumpe. Dissertation, TU, Darm-stadt (2004)

    Google Scholar 

  64. Meschkat, S., Stoffel, B.: The local impeller head at different circumferential positions in a volute casing of a centrifugal pump in comparison to the characteristic of the impeller alone. In: 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne (2002)

    Google Scholar 

  65. Naudascher, E., Rockwell, D.: Flow-Induced Vibrations. An Engineering Guide. Balkema, Rotterdam (1994)

    Google Scholar 

  66. Nordmann, R., et al.: Rotordynamic coefficients and leakage flow for smooth and grooved seals in turbopumps. In: Proceedings IFToMM Meeting, Tokyo (Sept 1986)

    Google Scholar 

  67. Offenhäuser, H.: Druckschwankungsmesssungen an Kreiselpumpen mit Leitrad. VDI. Ber. 193, 211–218 (1973)

    Google Scholar 

  68. Reinsch, K.H., Barutzki, F.: Erhöhung der Lebensdauer von Rohrleitungssystemen durch den Einsatz viskoser Dämpfer. Rohrleitungstechnik, 7. Auf., Vulkan-Verlag, Essen

    Google Scholar 

  69. Robinet, F., Gülich, J.F., Kaiser, T.: Vane pass vibrations—source, assessment and correction—a practical guide for centrifugal pumps. In: 16th International Pump Users Symposium, Houston, pp. 121–137 (1999)

    Google Scholar 

  70. Ross, D.: Mechanics of Underwater Noise. Pergamon Press (1976)

    Google Scholar 

  71. Rütten, F.: Large eddy simulation in 90°-pipe bend flows. J. Turbul. 2, 003 (2001)

    Google Scholar 

  72. Sano, T., et al.: Alternate blade stall and rotating stall in a vaned diffuser. JSME Int. Ser. B. 45(4), 810–819 (2002)

    Google Scholar 

  73. Schneider, K.: Das Verhalten von Kreiselpumpen beim Auftreten von Druckwellen. Dissertation, TU, Stuttgart (1986)

    Google Scholar 

  74. Schwartz, R., Nelson, R.: Acoustic resonance phenomena in high energy variable speed centrifugal pumps. In: 1st International Pump Symposium, Houston, pp. 23–28 (1984)

    Google Scholar 

  75. Spirig, M.: Einfluß der Kammerströmung auf die strömungsbedingten Kräfte im endlich langen Spalt einer hydraulischen Labyrinthdichtung. Dissertation, ETH. Nr. 13288 (1999)

    Google Scholar 

  76. Storace, A.F., et al.: Unsteady flow and whirl-inducing forces in axial-flow compressors. ASME J. Turbomach. 123, 433–445 (2001)

    Google Scholar 

  77. Storteig, E.: Dynamic characteristics and leakage performance of liquid annular seals in centrifugal pumps. Dissertation, MTA-00-137 TU, Trondheim (2000)

    Google Scholar 

  78. Strub, R.A.: Pressure fluctuations and fatigue stresses in storage pumps and pump turbines. ASME Paper No. 63-AHGT-11 (1963)

    Google Scholar 

  79. Sudo, S.: Pumping plant noise reduction. Hitachi Rev. 29(5), 217–222 (1980)

    Google Scholar 

  80. Tanaka, H.: Vibration behavior and dynamic stress of runners of very high head reversible pump-turbines. In: IAHR. Symposium, Belgrade, Beitrag U2 (1990)

    Google Scholar 

  81. Tsujimoto, Y., et al.: Observation of oscillating cavitation in an inducer. ASME J. Fluids. Eng. 119, 775–781 (1997)

    Google Scholar 

  82. Ubaldi, M., et al.: An experimental investigation of stator induced unsteadiness on centrifugal impeller outflow. ASME J. Turbomach. 118, 41–51 (1996)

    Google Scholar 

  83. Verhoeven, J.: Unsteady hydraulic forces in centrifugal pumps. IMechE Paper C348/88 (1988)

    Google Scholar 

  84. Warth, H.: Experimentelle Untersuchungen axial durchströmter Ringspalte von Hybridentlastungseinrichtungen. Dissertation, TU Kaiserslautern, SAM Forschungsbericht Bd. 2 (2000)

    Google Scholar 

  85. Weaver, D.S.: Interaction of fluid flow and acoustic fields. In: AECL Seminar on Acoustic Pulsations in Rotating Machinery, Toronto (1993)

    Google Scholar 

  86. Weber, M.: Geräusch- und pulsationsarme Verbrennungsluftgebläse und deren Einfluß auf selbsterregte Brennkammerschwingungen. Dissertation, TU Kaiserslautern, SAM Forschungsbericht Bd 7 (2002)

    Google Scholar 

  87. Yedidiah, S.: Oscillations at low NPSH caused by flow conditions in the suction pipe. ASME Cavitation and Multiphase Flow Forum (1974)

    Google Scholar 

  88. Yuasa, T., Hinata, T.: Fluctuating flow behind the impeller of a centrifugal pump. Bull. JSME 22(174), 1746–1753 (1979)

    Google Scholar 

  89. Ziada, S.: Flow-excited resonances of piping systems containing side-branches: excitation mechanism, counter-measures and design guidelines. In: AECL Seminar on acoustic pulsations in rotating machinery, Toronto (1993)

    Google Scholar 

  90. Parrondo, J., et al.: The effect of the operating point on the pressure fluctuations at BPF in the volute of a centrifugal pump. ASME JFE 124, 784–790 (2002)

    Google Scholar 

  91. Bolleter, U. et al.: Solution to cavitation-induced vibration problems in crude-oil pipeline pumps. In: 8th Pump Users Symposium, Texas A&M (1991)

    Google Scholar 

  92. ANSI/HI 9.8 Standard: Pump Intake Design (2012)

    Google Scholar 

  93. Rosenberger, H.: Experimental determination of the rotor impacts of axial pumps in intake structures under distorted approach flow. Thesis TU Kaiserslautern. SAM Forschungsbericht Bd 5 (2001)

    Google Scholar 

  94. Weinerth, J.: Kennlinienverhalten und Rotorbelastung von axialen Kühlwasserpumpen unter Betriebsbedingungen. Diss TU Kaiserslautern. SAM Forschungsbericht Bd 9 (2004)

    Google Scholar 

  95. Schiavello, B., Smith, D.R., Price, S.M.: Abnormal vertical pump suction recirculation problems due to pump-system interaction. In: 21st Pump Users Symposium, Houston, pp. 18–47 (2004)

    Google Scholar 

  96. Dupont, P. et al.: CFD analysis of sump flow and its impact on the hydraulic forces acting on the impeller of a vertical pump. In: Rotating Equipment Conference 2008, Düsseldorf

    Google Scholar 

  97. Krueger, S., et al.: Pump sump CFD for vertical pump. ASME FEDSM2009-78162

    Google Scholar 

  98. May, F.: Sulzer Technical Review 3/2015

    Google Scholar 

  99. Ohashi, H.: Influence of impeller and diffuser geometries on lateral fluid forces of whirling centrifugal pump impeller. NASA CP 3026, 285–322 (1988)

    Google Scholar 

  100. Van Esch, B.P.M.: Performance and radial loading of a mixed-flow pump under non-uniform approach flow. ASME JFE 131 (2009)

    Google Scholar 

  101. Untaroiu, A., et al: On the dynamic properties of pump liquid seals. ASME JFE 135 (2013)

    Google Scholar 

  102. Gülich, J.F.: Selection criteria for suction impellers of centrifugal pumps. World Pumps, Parts 1 to 3, January, March, April, 2001

    Google Scholar 

  103. Manning, T., Serge, D.: River water pump cyclic vibration. In: 29th Pump Users Symposium, Houston (2013)

    Google Scholar 

  104. Marscher, W.D.: End users guide to centrifugal pump rotor dynamics. In: 30th Pump Users Symposium, Houston (2014)

    Google Scholar 

  105. Marscher, W.D.: The effect of fluid forces at various operation conditions on the vibrations of vertical turbine pumps. In: IMechE Seminar Radial Loads and Axial Thrust, pp. 17–38 (1986)

    Google Scholar 

  106. Sumer, B., Fredsoe, J.: Hydrodynamics Around Cylindrical Structures, Revised Edition (2006)

    Google Scholar 

  107. Ohashi, H.: Case study of pump failure due to rotor-stator interaction. Intl J of Rotating Machinery 1, 53–60 (1994)

    Google Scholar 

  108. Corbo, M.A., et al.: Practical use of rotor dynamic analysis to correct a vertical long-shaft pump’s whirl problem. In: 19th Pump Users Symposium, Houston, pp. 107–120 (2002)

    Google Scholar 

  109. ISO 13709: Centrifugal Pumps for the Petrochemical Industry, 2nd edn (API 610) (2009)

    Google Scholar 

  110. Schneider, A., Conrad, D., Böhle, M.: Lattice Boltzmann simulation of the flow field in pump intakes—a new approach. ASME JFE 137, 031105 (2015)

    Google Scholar 

  111. Rebernik, B.: Radialkräfte von Kreiselpumpen mit unterschiedlichen Gehäuseformen. “25 Jahre ASTRÖ”, Aströ, Graz, pp. 55–60 (1979)

    Google Scholar 

  112. Boyadjis, P., Onari, M.: Diagnosing and correcting a damaging below-ground column natural frequency in a vertical pump using field testing and FEA. In: 28th Pump Users Symposium, Houston (2012)

    Google Scholar 

  113. Nakato, T.: Field-tested solutions to pump vibrations. In: 1st International Symposium on Noise and vibrations, Paris (1993)

    Google Scholar 

  114. Schubert, F., Rosenberger, H.: Development of a compact intake chamber for vertical tubular pumps. In: ASCE Joint Conference Water Resources, Minneapolis (2000)

    Google Scholar 

  115. Smith, D., Woodward, G.: Vibration analysis of vertical pumps. In: 15th Turbomachinery Symposium Texas A&M, pp. 61–68 (1986)

    Google Scholar 

  116. Corley, J.E.: Vibration problems of large vertical pumps and motors. In: 9th Turbomachinery Symposium Texas A&M, pp. 75–82 (1980)

    Google Scholar 

  117. Kirst, K.: Experimentelle und numerische Untersuchungen von Zulaufbedingungen vertikaler Pumpsysteme. Dissertation TU Kaisers-lau-tern. SAM Forschungsbericht Bd 22 (2012)

    Google Scholar 

  118. Kaiser, T., et al.: Analysis guide for variable-frequency drive operated centrifugal pumps. In: 24th International Pump Users Symposium Texas A&M, pp. 81–106 (2008)

    Google Scholar 

  119. Blevins, R.D.: Applied Fluid Dynamics Handbook. Van Nostrand Reinhold, New York (1984)

    Google Scholar 

  120. Schäfer, F.: Untersuchung des Einflusses hydraulischer und mechanischer Anregungen auf das Betriebsverhalten einer axialen Rohrgehäusepumpe. Dissertation TU Kaiserslautern. SAM Forschungsbericht Bd 18 (2008)

    Google Scholar 

  121. Peters, M.: Fiber-reinforced ceramic bearings for cooling water pump applications. In: IMech 2014 Turbomachinery Symposium

    Google Scholar 

  122. Franke, G., et al.: On pressure mode shapes arising from rotor-stator interactions. IAHR WG1-2003 Meeting

    Google Scholar 

  123. Fischer, R.K., et al.: Contribution to improved understanding of the dynamic behaviour of pump turbines. In: 22nd IAHR Symposium on Hydraulic Machinery and Systems (2004)

    Google Scholar 

  124. Buckler, M.: Tutorial on vertical pumps. In: Calgary Pump Symposium (2013)

    Google Scholar 

  125. Guo, S., Okamoto, H.: An experimental study on the fluid forces induced by rotor-stator interaction in a centrifugal pump. Int. J. Rotating Mach. 9(2), 135–144 (2003)

    Google Scholar 

  126. Zhang, M., Tsukamoto, H.: Unsteady hydrodynamic forces due to rotor-stator interaction on a diffuser pump with identical number of vanes on the impeller and diffuser. J. Fluid Eng. 127, 743–751 (2005)

    Google Scholar 

  127. Nicolet, C.: Hydro-acoustic modelling and numerical simulation of unsteady operation of hydro-electric systems. Ph.D. thesis EPFL (2007)

    Google Scholar 

  128. Gülich, J.F., et al.: Review of parameters influencing hydraulic forces on centrifugal impellers. Proc. IMechE 201(A3), 163–174 (1987)

    Google Scholar 

  129. Smith, D.R., et al.: Centrifugal pump vibration caused by super-synchronous shaft instability. In: 13th International Pump Users Symposium, Houston, pp. 47–69 (1996)

    Google Scholar 

  130. Feng, J., Benra, F.K., Dohmen, H.J.: Numerical investigation on pressure fluctuations for different configurations of vaned-diffuser pumps. Int. J. Rotating Mach. (2007)

    Google Scholar 

  131. Van Esch, B., Cheng, L.: Unstable operation of a mixed-flow pump and the influence of tip clearance. ASME AJK2011-06016

    Google Scholar 

  132. Miyabe, M., et al.: Rotating stall behavior in a diffuser of a mixed-flow pump and its suppression. ASME FEDSM 2008-55132

    Google Scholar 

  133. Miyabe, M., et al.: On improvement of characteristic instability and internal flow in mixed-flow pumps. J. Fluid Sci. Technol. 3(6), 732–743 (2008)

    Google Scholar 

  134. Miyabe, M., et al.: Unstable head-flow characteristic generation of a low-specific speed mixed-flow pump. J. Therm. Sci. 15(2), 115-ff (2006)

    Google Scholar 

  135. Barrio, E., et al.: The effect of impeller cutback on the fluid-dynamic pulsations and load at blade-passing frequency in a centrifugal pump. ASME JFE 130, 111102 (2008)

    Google Scholar 

  136. Botero F et al: Non-intrusive detection of rotating stall in pump-turbine. Mech. syst. signal process. (2014)

    Google Scholar 

  137. Figliola, R.S., Beasley, D.E.: Theory and Design for Mechanical Measurement, 5th edn. Wiley, Hoboken (2011)

    Google Scholar 

  138. Berten, S.: R&D pump investigations. Technical Review Sulzer, No. 1 (2017)

    Google Scholar 

  139. Berten, S., et al.: Experimental and numerical analysis of pressure pulsations and mechanical deformations in a centrifugal pump impeller. ASME AJK2011-06057 (2011)

    Google Scholar 

  140. Bradshaw, S., Sabini, E.: Modification of BB1 vibration characteristics to meet ISO 13709 limits. In: Texas A&M Pump Symposium (2011)

    Google Scholar 

  141. Berten, S., et al.: Experimental investigation of pressure fluctuations in a high-energy centrifugal pump at off-design conditions. In: IMechE Conference (2014)

    Google Scholar 

  142. Zobeiri, A., et al.: How oblique trailing edge of a hydrofoil reduces the vortex-induced vibration. J. Fluids Struct. 32, 78–89 (2012)

    Google Scholar 

  143. Jery, B., et al.: Forces on centrifugal pump impellers. In: Texas A&M Pump Symposium, pp. 21–32 (1985)

    Google Scholar 

  144. Franz, R., et al.: The hydrodynamic forces on a centrifugal pump impeller in the presence of cavitation. ASME JFE 112, 264–271 (1990)

    Google Scholar 

  145. Jery, B.: Experimental study of unsteady hydrodynamic force matrices on whirling centrifugal pump impellers. Ph.D. thesis, Caltech (1987)

    Google Scholar 

  146. Dietzen, F., Nordmann, R.: Calculating rotordynamic coefficients of seals by finite-difference techniques. NASA CP 2443, pp. 77–96 (1986)

    Google Scholar 

  147. Fu, D.C., et al.: Impact of impeller stagger angle on pressure fluctuation of double-suction centrifugal pump. Chin J Mech Eng (2018)

    Google Scholar 

  148. Bachert, R.: Dreidimensionale, instationäre Effekte kavitierender Strömungen – Analysen an Einzelprofilen und in einer Radialpumpe. Diss. TU Darmstadt, (2004)

    Google Scholar 

  149. Lehr, C., Linkamp, A., Brümmer, A.: Abschlussbericht zum Verbundprojekt: Entwicklung von Grundlagen für instationär betriebene hydraulische Pumpsysteme in flexiblen Kraftwerken. TU Dortmund Februar (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Friedrich Gülich .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gülich, J.F. (2020). Noise and Vibrations. In: Centrifugal Pumps. Springer, Cham. https://doi.org/10.1007/978-3-030-14788-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14788-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14787-7

  • Online ISBN: 978-3-030-14788-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics