Skip to main content

Current Advancements in Recombinant Technology for Industrial Production of Cellulases: Part-II

  • Chapter
  • First Online:
Approaches to Enhance Industrial Production of Fungal Cellulases

Part of the book series: Fungal Biology ((FUNGBIO))

  • 439 Accesses

Abstract

Cellulase is the largest group of industrial enzyme used worldwide for the degradation of cellulose. Since many industries use this enzyme for the production of good quality of products, hence the demand for cellulase is increasing day by day. Cellulases are preferred for different purposes by industries which include paper recycling, cotton, textile, juice extraction, food, etc. Cellulases have some major enzymatic group components such as endoglucanases, exoglucanase and β-glycosidase. Different technologies are used for the production of cellulases, i.e. shake-flask experiments to fermentations, construction of improved cellulases, batch cellulase production and fed-batch cellulase production. Each method has its own limitations; considering these limitations, recombinant technology may play a valuable function in increasing the cellulase production. In present scenario, different industries are using the recombinant technology for the enhancement of cellulase production. The recombinant technology can help to produce cellulase more effectively than the other technologies which convert cellulosic biomass to glucose and other products. In nature, microorganism has the potential to produce cellulases, which enable the function of hydrolysing cellulose. However, recent reports claim that the plants, several molluscs such as snails, a periwinkle, Nudibranchia and a few bivalves also have the ability to yield cellulases. In this chapter, we have concluded how recombinant technology can help to manage the crisis of cellulases for various objectives and also improving the availability of biofuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alriksson B, Rose SH, van Zyl WH, Sjöde A, Nilvebrant NO, Jönsson LJ (2009) Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Appl Environ Microbiol 75(8):2366–2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ariffin H, Hassan MA, Shah UK, Abdullah N, Ghazali FM, Shirai Y (2008) Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. J Biosci Bioeng 106(3):231–236

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian N, Simões N (2014) Bacillus pumilus S124A carboxymethyl cellulase; a thermo stable enzyme with a wide substrate spectrum utility. Int J Biol Macromol 67:132–139

    Article  CAS  PubMed  Google Scholar 

  • Bansal N, Tewari R, Soni R, Soni SK (2012) Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag 32(7):1341–1346

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18(3):237–245

    Article  CAS  PubMed  Google Scholar 

  • Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN (2017) Microbial cellulases diversity & biotechnology with reference to mangrove environment: a review. J Genet Eng Biotechnol 15 (1):197–210

    Google Scholar 

  • Béra-Maillet C, Mosoni P, Kwasiborski A, Suau F, Ribot Y, Forano E (2009) Development of a RT-qPCR method for the quantification of Fibrobacter succinogenes S85 glycoside hydrolase transcripts in the rumen content of gnotobiotic and conventional sheep. J Microbiol Methods 77(1):8–16

    Article  PubMed  CAS  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383

    Article  CAS  PubMed  Google Scholar 

  • Bhatti HN, Batool S, Afzal N (2013) Production and characterization of a novel (beta)-glucosidase from Fusarium solani. Int J Agric Biol 15(1):140–144

    Google Scholar 

  • Bower BS, Larenas EA, Mitchinson C, inventors; Danisco US Inc, assignee (2012) Exo-endo cellulase fusion protein. United States patent US 8,097–445

    Google Scholar 

  • Brunecky R, Selig MJ, Vinzant TB, Himmel ME, Lee D, Blaylock MJ, Decker SR (2011) In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize. Biotechnol Biofuels 4(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carere C, Sparling R, Cicek N, Levin D (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9(7):1342–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinn MS, Nokes SE, Strobel HJ (2008) Influence of moisture content and cultivation duration on Clostridium thermocellum 27405 end-product formation in solid substrate cultivation on Avicel. Bioresour Technol 99(7):2664–2671

    Article  CAS  PubMed  Google Scholar 

  • Chou HL, Dai Z, Hsieh CW, Ku MS (2011) High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid. Biotechnol Biofuels 4(1):58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comlekcioglu U, Ozkose E, Tutus A, Akyol I, Ekinci MS (2010) Cloning and characterization of cellulase and xylanase coding genes from anaerobic fungus Neocallimastix sp. GMLF1. Int J Agric Biol 12(5):691–696

    CAS  Google Scholar 

  • Dalby PA (2007) Engineering enzymes for biocatalysis. Recent Pat Biotechnol 1(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Desvaux M, Guedon E, Petitdemange H (2000) Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl Environ Microbiol 66(6):2461–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dharmagadda VS, Nokes SE, Strobel HJ, Flythe MD (2010) Investigation of the metabolic inhibition observed in solid-substrate cultivation of Clostridium thermocellum on cellulose. Bioresour Technol 101(15):6039–6044

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Hong Y, Shao Z, Liu Z (2010) Molecular cloning, purification, and characterization of a novel, acidic, pH-stable endoglucanase from Martelella mediterranea. J Microbiol 48(3):393–398

    Article  CAS  PubMed  Google Scholar 

  • Duan CJ, Feng JX (2010) Mining metagenomes for novel cellulase genes. Biotechnol Lett 32(12):1765–1775

    Article  CAS  PubMed  Google Scholar 

  • Ekperigin MM (2007) Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. Afr J Biotechnol 6(1):28–33

    Google Scholar 

  • El-Gogary S, Leite A, Crivellaro O, Eveleigh DE, El-Dorry H (1989) Mechanism by which cellulose triggers cellobiohydrolase I gene expression in Trichoderma reesei. Proc Natl Acad Sci 86(16):6138–6141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esterbauer H, Steiner W, Labudova I, Hermann A, Hayn M (1991) Production of Trichoderma cellulase in laboratory and pilot scale. Bioresour Technol 36(1):51–65

    Article  CAS  Google Scholar 

  • Fischer R, Ostafe R, Twyman RM (2013) Cellulases from insects. In: Yellow biotechnology II. Springer, Berlin, Heidelberg, pp 51–64

    Chapter  Google Scholar 

  • Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U (2013) Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol 31(10):581–593

    Article  CAS  PubMed  Google Scholar 

  • Ghoshal G, Banerjee UC, Shivhare US (2013) Optimization of cellulase (EC 3.2. 1: 4) production using Penicillium citrinum MTCC 9620 in solid state fermentation. Br Biotechnol J 3(4):509–523

    Article  CAS  Google Scholar 

  • Gupta M, Sharma M, Singh S, Gupta P, Bajaj BK (2015) Enhanced production of cellulase from Bacillus licheniformis K-3 with potential for saccharification of rice straw. Energ Technol 3(3):216–224

    Article  CAS  Google Scholar 

  • Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29(9):419–425

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Tamaki H, Kumagai H (2007) Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 73(6):1331–1339

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Devaiah SP, Fake G, Egelkrout E, Teoh K, Requesens DV, Hayden C, Hood KR, Pappu KM, Carroll J, Howard JA (2012) Manipulating corn germplasm to increase recombinant protein accumulation. Plant Biotechnol J 10(1):20–30

    Article  CAS  PubMed  Google Scholar 

  • Jeon E, Hyeon JE, Suh DJ, Suh YW, Kim SW, Song KH, Han SO (2009) Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera β-glucosidase genes. Mol Cells 28(4):369

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Lee DS, Kim YO, Joshi CP, Bae HJ (2013) Improved recombinant cellulase expression in chloroplast of tobacco through promoter engineering and 5′ amplification promoting sequence. Plant Mol Biol 83(4–5):317–328

    Article  CAS  PubMed  Google Scholar 

  • Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–203

    Article  CAS  Google Scholar 

  • Knappert D, Grethlein H, Converse A (1980) Partial acid hydrolysis of cellulosic materials as a pretreatment for enzymatic hydrolysis. Biotechnol Bioeng 22(7):1449–1463

    Article  CAS  Google Scholar 

  • Knowles J, Lehtovaara P, Teeri T, Penttilä M, Salovuori I, Andre L (1987) The application of recombinant-DNA technology to cellulases and lignocellulosic wastes. Philos Trans R Soc 321(1561):449–454

    Article  CAS  Google Scholar 

  • Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M (2008) Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 105(6):622–627

    Article  CAS  PubMed  Google Scholar 

  • Krishna C (1999) Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresour Technol 69(3):231–239

    Article  CAS  Google Scholar 

  • Kubicek CP, Messner R, Gruber F, Mach RL, Kubicek-Pranz EM (1993) The Trichoderma cellulase regulatory puzzle: from the interior life of a secretory fungus. Enzym Microb Technol 15(2):90–99

    Article  CAS  Google Scholar 

  • Kuhad RC, Deswal D, Sharma S, Bhattacharya A, Jain KK, Kaur A, Pletschke BI, Singh A, Karp M (2016) Revisiting cellulase production and redefining current strategies based on major challenges. Renew Sust Energ Rev 55:249–272

    Article  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzym Res 1–10

    Article  CAS  Google Scholar 

  • Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7(1):135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamed RA, Setter E, Kenig RI, Bayer EA (1983) The cellulosomes—a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioenergy Symp 13:163–181

    CAS  Google Scholar 

  • Li W, Zhang WW, Yang MM, Chen YL (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40(2):195–201

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Li H, Li AN, Li DC (2009) Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomium thermophilum and its expression in Pichia pastoris. J Appl Microbiol 106(6):1867–1875

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Feng Z, Yesuf J, Blackburn JW (2010) Optimization of growth medium and enzyme assay conditions for crude cellulases produced by a novel thermophilic and cellulolytic bacterium, Anoxybacillus sp. 527. Appl Biochem Biotechnol 160(6):1841–1852

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zhang R, Yang X, Zhang Z, Song S, Miao Y, Shen Q (2012) Characterization of a thermostable β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33. Microb Cell Factories 11(1):25

    Article  CAS  Google Scholar 

  • Lo YC, Saratale GD, Chen WM, Bai MD, Chang JS (2009) Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzym Microb Technol 44(6–7):417–425

    Article  CAS  Google Scholar 

  • Lo YC, Lu WC, Chen CY, Chen WM, Chang JS (2010) Characterization and high-level production of xylanase from an indigenous cellulolytic bacterium Acinetobacter junii F6-02 from southern Taiwan soil. Biochem Eng J 53(1):77–84

    Article  CAS  Google Scholar 

  • Lü R, Zhao A, Li J, Liu C, Wang C, Wang X, Wang X, Pei R, Lu C, Yu M (2015) Screening, cloning and expression analysis of a cellulase derived from the causative agent of hypertrophy sorosis scleroteniosis, Ciboria shiraiana. Gene 565(2):221–227

    Article  PubMed  CAS  Google Scholar 

  • Maeda RN, Barcelos CA, Santa Anna LM, Pereira N Jr (2013) Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. J Biotechnol 163(1):38–44

    Article  CAS  PubMed  Google Scholar 

  • Mazzoli R, Lamberti C, Pessione E (2012) Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies. Trends Biotechnol 30(2):111–119

    Article  CAS  PubMed  Google Scholar 

  • Miettinen-Oinonen A, Paloheimo M, Lantto R, Suominen P (2005) Enhanced production of cellobiohydrolases in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. J Biotechnol 116(3):305–317

    Article  CAS  PubMed  Google Scholar 

  • Murray P, Aro N, Collins C, Grassick A, Penttilä M, Saloheimo M, Tuohy M (2004) Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expr Purif 38(2):248–257

    Article  CAS  PubMed  Google Scholar 

  • Nurul K, Kikuchi T (2011) Analysis of expressed sequence tags from the wood-decaying fungus Fomitopsis palustris and identification of potential genes involved in the decay process. J Microbiol Biotechnol 21(4):347–358

    Google Scholar 

  • Ohara H, Karita S, Kimura T, Sakka K, Ohmiya K (2000) Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci Biotechnol Biochem 64(2):254–260

    Article  CAS  PubMed  Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology 158(1):58–68

    Article  CAS  PubMed  Google Scholar 

  • Phitsuwan P, Laohakunjit N, Kerdchoechuen O, Kyu KL, Ratanakhanokchai K (2013) Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiol 58(2):163–176

    Article  CAS  Google Scholar 

  • Ponpium P, Ratanakhanokchai K, Kyu KL (2000) Isolation and properties of a cellulosome-type multienzyme complex of the thermophilic Bacteroides sp. strain P-1. Enzym Microb Technol 26(5–6):459–465

    Article  CAS  Google Scholar 

  • Rajoka MI, Malik KA (1997) Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates. Bioresour Technol 59(1):21–27

    Article  CAS  Google Scholar 

  • Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101(22):8798–8806

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T, Claeyssens M, Van Montagu M (1993) Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J Bacteriol 175(21):7056–7065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg SL (1978) Lignin biodegradation and the production of ethyl alcohol from cellulose. Lignin biodegradation: microbiology, chemistry and potential applications. US Forest Products Laboratory, Madison, WI, May 9–11, 2013

    Google Scholar 

  • Ryu DD, Mandels M (1980) Cellulases: biosynthesis and applications. Enzym Microb Technol 2(2):91–102

    Article  CAS  Google Scholar 

  • Salem KS, Rashid TU, Islam MM, Khan MN, Sharmeen S, Rahman MM, Haque P (2016) Recent updates on immobilization of microbial cellulase. In New and future developments in microbial biotechnology and bioengineering, pp 107–139. Elsevier

    Google Scholar 

  • San Ryu J, Shary S, Houtman CJ, Panisko EA, Korripally P, John FJ, Crooks C, Siika-aho M, Magnuson JK, Hammel KE (2011) Proteomic and functional analysis of the cellulase system expressed by Postia placenta during brown rot of solid wood. Appl Environ Microbiol AEM-05496:7933–7941

    Google Scholar 

  • Saranraj P, Stella D, Reetha D (2012) Microbial cellulases and its applications. Int J Biochem Biotech Sci 1:1–2

    Google Scholar 

  • Schell DJ, Hinman ND, Wyman CE, Werdene PJ (1990) Whole broth cellulase production for use in simultaneous saccharification and fermentation. Appl Biochem Biotechnol 24(1):287

    Article  Google Scholar 

  • Sheridan PP, Brenchley JE (2000) Characterization of a salt-tolerant family 42 β-galactosidase from a psychrophilic Antarctic Planococcus isolate. Appl Environ Microbiol 66(6):2438–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiang M, Linden JC, Mohagneghi A, Rivard CJ, Grohmann K, Himmel ME (1990) Cellulase production by Acidothermus cellulolyticus. Appl Biochem Biotechnol 1:223–235

    Article  Google Scholar 

  • Shiang M, Linden JC, Mohagheghi A, Grohmann K, Himmel ME (1991) Regulation of cellulase synthesis in Acidothermus cellulolyticus. Biotechnol Prog 7(4):315–322

    Article  CAS  Google Scholar 

  • Shu-bin L, Ren-Chao Z, Xia L, Chu-yi C, Ai-lin Y (2012) Solid-state fermentation with okara for production of cellobiase-rich cellulases preparation by a selected Bacillus subtilis Pa5. Afr J Biotechnol 11(11):2720–2730

    Google Scholar 

  • Singhania RR, Sukumaran RK, Pandey A (2007) Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Appl Biochem Biotechnol 142(1):60–70

    Article  CAS  PubMed  Google Scholar 

  • Singhania RR, Adsul M, Pandey A, Patel AK (2017) Cellulases. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 73–101

    Chapter  Google Scholar 

  • Solingen P, Meijer D, Kleij WA, Barnett C, Bolle R, Power SD, Jones BE (2001) Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles 5(5):333–341

    Article  PubMed  Google Scholar 

  • Sudto A, Punyathiti Y, Pongsilp N (2008) The use of agricultural wasted as substrates for cell growth and carboxymethyl cellulase (CMCase) production by Bacillus subtilis, Escherichia coli and Rhizobium sp. Curr Appl Sci Technol 8(2):84–92

    Google Scholar 

  • Szakmary K, Wotawa A, Kubicek CP (1991) Origin of oxidized cellulose degradation products and mechanism of their promotion of cellobiohydrolases I biosynthesis in Trichoderma reesei. Microbiology 137(12):2873–2878

    CAS  Google Scholar 

  • Tambor JH, Ren H, Ushinsky S, Zheng Y, Riemens A, St-Francois C, Tsang A, Powlowski J, Storms R (2012) Recombinant expression, activity screening and functional characterization identifies three novel endo-1, 4-β-glucanases that efficiently hydrolyse cellulosic substrates. Appl Microbiol Biotechnol 93(1):203–214

    Article  PubMed  CAS  Google Scholar 

  • Tang B, Pan H, Zhang Q, Ding L (2009) Cloning and expression of cellulase gene EG1 from Rhizopus stolonifer var. reflexus TP-02 in Escherichia coli. Bioresour Technol 100(23):6129–6132

    Article  CAS  PubMed  Google Scholar 

  • Tangnu SK, Blanch HW, Wilke CR (1981) Enhanced production of cellulase, hemicellulose, and β-glucosidase by Trichoderma reesei (Rut C-30). Biotechnol Bioeng 23(8):1837–1849

    Article  CAS  Google Scholar 

  • Thomas L, Joseph A, Gottumukkala LD (2014) Xylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvement. Bioresour Technol 158:343–350

    Article  CAS  PubMed  Google Scholar 

  • Thongekkaew J, Ikeda H, Masaki K, Iefuji H (2008) An acidic and thermostable carboxymethyl cellulase from the yeast Cryptococcus sp. S-2: purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichia pastoris. Protein Expr Purif 60(2):140–146

    Article  CAS  PubMed  Google Scholar 

  • Tsai SL, Oh J, Singh S, Chen R, Chen W (2009) Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75(19):6087–6093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Bao K, inventors; Danisco US Inc, assignee (2009) Neutral cellulase catalytic core and method of producing same. United States patent application US 11/784-926

    Google Scholar 

  • Wang Z, Bay H, Chew K, Geng A (2014) High-loading oil palm empty fruit bunch saccharification using cellulases from Trichoderma koningii MF6. Process Biochem 49(4):673–680

    Article  CAS  Google Scholar 

  • Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    Article  CAS  PubMed  Google Scholar 

  • Watson TG, Nelligan I, Lessing L (1984) Cellulase production by Trichoderma reesei (RUT-C30) in fed-batch culture. Biotechnol Lett 6(10):667–672

    Article  CAS  Google Scholar 

  • Wei H, Xu Q, Taylor LE II, Baker JO, Tucker MP, Ding SY (2009) Natural paradigms of plant cell wall degradation. Curr Opin Biotechnol 20(3):330–338

    Article  CAS  PubMed  Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20(3):295–299

    Article  CAS  PubMed  Google Scholar 

  • Wulff NA, Carrer H, Pascholati SF (2006) Expression and purification of cellulase Xf818 from Xylella fastidiosa in Escherichia coli. Curr Microbiol 53(3):198–203

    Article  CAS  PubMed  Google Scholar 

  • Xiros C, Katapodis P, Christakopoulos P (2011) Factors affecting cellulose and hemicellulose hydrolysis of alkali treated brewers spent grain by Fusarium oxysporum enzyme extract. Bioresour Technol 102(2):1688–1696

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Weng H, Wang M, Xu W, Li Y, Yang H (2010) Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I 15. Mol Biol Rep 37(4):1923–1929

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhong Y, Zhao X, Wang T (2010) Development of the cellulolytic fungus Trichoderma reesei strain with enhanced β-glucosidase and filter paper activity using strong artificial cellobiohydrolase 1 promoter. Bioresour Technol 101(24):9815–9818

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, G., Patel, A.K., Gupta, A., Gupta, D., Mishra, V.K. (2019). Current Advancements in Recombinant Technology for Industrial Production of Cellulases: Part-II. In: Srivastava, M., Srivastava, N., Ramteke, P., Mishra, P. (eds) Approaches to Enhance Industrial Production of Fungal Cellulases . Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-14726-6_11

Download citation

Publish with us

Policies and ethics