Skip to main content

Learning Algorithms and Implementation

  • Chapter
  • First Online:
Deep Learning Classifiers with Memristive Networks

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 14))

Abstract

This chapter provides a brief overview of learning algorithms and their implementations on hardware. We focus on memristor based systems for leaning, as this is one of the most promising solutions to implement deep neural network on hardware, due to the small on-chip area and low power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azghadi MR., Al-Sarawi S, Iannella N, Abbott D (2012) Design and implementation of BCM rule based on spike-timing dependent plasticity. In: The 2012 international joint conference on neural networks (IJCNN), IEEE, pp 1–7

    Google Scholar 

  2. Cheng M, Xia L, Zhu Z, Cai Y, Xie Y, Wang Y, Yang H (2017) Time: a training-in-memory architecture for memristor-based deep neural networks. In: 2017 54th ACM/EDAC/IEEE design automation conference (DAC), pp 1–6, https://doi.org/10.1145/3061639.3062326

  3. Choe Y (2015) Anti-hebbian learning. In: Encyclopedia of computational neuroscience. Springer, pp 191–193

    Google Scholar 

  4. Gerstner W, Kistler WM (2002) Mathematical formulations of hebbian learning. Biol Cybern 87(5–6):404–415

    Article  Google Scholar 

  5. Hasan R, Taha TM (2014) Enabling back propagation training of memristor crossbar neuromorphic processors. In: 2014 International joint conference on neural networks (IJCNN), IEEE, pp 21–28

    Google Scholar 

  6. Hasan R, Taha TM, Yakopcic C (2017) On-chip training of memristor crossbar based multi-layer neural networks. Microelectron J 66:31–40

    Article  Google Scholar 

  7. Hassan AM, Yang C, Liu C, Li HH, Chen Y (2017) Hybrid spiking-based multi-layered self-learning neuromorphic system based on memristor crossbar arrays. In: 2017 Design, automation & test in Europe conference & exhibition (DATE), IEEE, pp 776–781

    Google Scholar 

  8. Hu X, Feng G, Duan S, Liu L (2017) A memristive multilayer cellular neural network with applications to image processing. IEEE Trans Neural Netw Learn Syst

    Google Scholar 

  9. Kataeva I, Merrikh-Bayat F, Zamanidoost E, Strukov D (2015) Efficient training algorithms for neural networks based on memristive crossbar circuits. In: 2015 International joint conference on neural networks (IJCNN), IEEE, pp 1–8

    Google Scholar 

  10. Krestinskaya O, Dolzhikova I, James AP (2018) Hierarchical temporal memory using memristor networks: a survey. IEEE Trans Emerg Top Comput Intell 2(5):380–395. https://doi.org/10.1109/TETCI.2018.2838124

    Article  Google Scholar 

  11. Krestinskaya O, Ibrayev T, James AP (2018) Hierarchical temporal memory features with memristor logic circuits for pattern recognition. IEEE Trans Comput-Aided Des Integr Circuits Syst 37(6):1143–1156

    Article  Google Scholar 

  12. Krestinskaya O, James AP, Chua LO (2018) Neuro-memristive circuits for edge computing: a review. arXiv preprint arXiv:1807.00962

  13. Krestinskaya O, Salama KN, James AP (2018) Analog backpropagation learning circuits for memristive crossbar neural networks. In: 2018 IEEE international symposium on circuits and systems (ISCAS), IEEE, pp 1–5

    Google Scholar 

  14. Krestinskaya O, Salama KN, James AP (2018) Learning in memristive neural network architectures using analog backpropagation circuits. IEEE Trans Circuits Syst I: Regul Papers

    Google Scholar 

  15. Leonard J, Kramer M (1990) Improvement of the backpropagation algorithm for training neural networks. Comput Chem Eng 14(3):337–341

    Article  Google Scholar 

  16. Li B, Wang Y, Wang Y, Chen Y, Yang H (2014) Training itself: mixed-signal training acceleration for memristor-based neural network. In: 2014 19th Asia and South Pacific design automation conference (ASP-DAC), IEEE, pp 361–366

    Google Scholar 

  17. Nair MV, Dudek P (2015) Gradient-descent-based learning in memristive crossbar arrays. In: 2015 International joint conference on neural networks (IJCNN), IEEE, pp 1–7

    Google Scholar 

  18. Rosenthal E, Greshnikov S, Soudry D, Kvatinsky S (2016) A fully analog memristor-based neural network with online gradient training. In: 2016 IEEE international symposium on circuits and systems (ISCAS), pp 1394–1397, https://doi.org/10.1109/ISCAS.2016.7527510

  19. Sheridan PM, Du C, Lu WD (2016) Feature extraction using memristor networks. IEEE Trans Neural Netw Learn Syst 27(11):2327–2336

    Article  Google Scholar 

  20. Smagulova K, Krestinskaya O, James AP (2018) A memristor-based long short term memory circuit. Analog Integr Circuits Signal Process 95(3):467–472

    Article  Google Scholar 

  21. Soudry D, Castro DD, Gal A, Kolodny A, Kvatinsky S (2015) Memristor-based multilayer neural networks with online gradient descent training. IEEE Trans Neural Netw Learn Syst 26(10):2408–2421. https://doi.org/10.1109/TNNLS.2014.2383395

    Article  MathSciNet  Google Scholar 

  22. Soudry D, Di Castro D, Gal A, Kolodny A, Kvatinsky S (2013) Hebbian learning rules with memristors. Israel Institute of Technology, Haifa, Israel

    Google Scholar 

  23. Srinivasan N, Ravichandran V, Chan K, Vidhya J, Ramakirishnan S, Krishnan S (2002) Exponentiated backpropagation algorithm for multilayer feedforward neural networks. In: Proceedings of the 9th international conference on neural information processing, 2002. ICONIP’02, vol 1. IEEE, pp 327–331

    Google Scholar 

  24. Wu X, Saxena V, Zhu K (2015) A CMOS spiking neuron for dense memristor-synapse connectivity for brain-inspired computing. In: 2015 International joint conference on neural networks (IJCNN), IEEE, pp 1–6

    Google Scholar 

  25. Zamanidoost E, Bayat FM, Strukov D, Kataeva I (2015) Manhattan rule training for memristive crossbar circuit pattern classifiers. In: 2015 IEEE 9th international symposium on intelligent signal processing (WISP), IEEE, pp 1–6

    Google Scholar 

  26. Zhang Y, Wang X, Friedman EG (2018) Memristor-based circuit design for multilayer neural networks. IEEE Trans Circuits Syst I: Regul Pap 65(2):677–686

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Pappachen James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krestinskaya, O., James, A.P. (2020). Learning Algorithms and Implementation. In: James, A. (eds) Deep Learning Classifiers with Memristive Networks. Modeling and Optimization in Science and Technologies, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-14524-8_7

Download citation

Publish with us

Policies and ethics