Skip to main content

Heterogeneity of Small Cell Lung Cancer Stem Cells

  • Chapter
  • First Online:
Stem Cells Heterogeneity in Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1139))

Abstract

Small cell lung cancer, a subtype of lung cancer is an extremely malignant disease due to its metastases and recurrence. Patients with SCLC develop resistance to chemotherapy and the disease relapses. This relapse and resistance are attributed to the heterogeneity of SCLC. Various factors such as recurrent mutations in key regulatory genes such as TP53, RB1, and myc, epigenetic changes, and cancer stem cells contribute to the observed heterogeneity. Cancer stem cell models predict neuroendocrine origin of SCLC. Though an unambiguous established CSC marker has not been assigned, markers CD133, CD44 have been found associated with SCLC. Genetically engineered mouse models (GEMMs) allow the validation of driver mutations and are necessary for design of targeted therapy. This chapter outlines the factors contributing to SCLC heterogeneity, detection methods, and the current therapy trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo A et al (2011) LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol 13(6):652–659

    Article  CAS  PubMed  Google Scholar 

  • Arcaro A (2015) Targeted therapies for small cell lung cancer: where do we stand? Crit Rev Oncol Hematol 95(2):154–164

    Article  PubMed  Google Scholar 

  • Borromeo MD et al (2016) ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. Cell Rep 16(5):1259–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter L et al (2017) Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer. Nat Med 23(1):114–119

    Article  CAS  PubMed  Google Scholar 

  • Carvajal LA, Manfredi JJ (2013) Another fork in the road—life or death decisions by the tumour suppressor p53. EMBO Rep 14(5):414–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell J, Dalton S (2013) Roles for MYC in the establishment and maintenance of pluripotency. Cold Spring Harb Perspect Med 3:a014381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christensen CL et al (2014) Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell 26(6):909–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Codony-Servat J et al (2016) Cancer stem cells in small cell lung cancer. Transl Lung Cancer Res 5(1):16–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coe BP et al (2013) Genomic deregulation of the E2F/ Rb pathway leads to activation of the oncogene EZH2 in small cell lung cancer. PLoS One 8(8):e71670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel VC et al (2009) A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res 69(8):3364–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean M (2009) ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 14(1):3–9

    Article  PubMed  Google Scholar 

  • Dick JE (2008a) Stem cell concepts renew cancer research. Blood 112(13):4793–4807

    Article  CAS  PubMed  Google Scholar 

  • Dick JE (2008b) Stem cell concepts renew cancer research. Blood 112(13):4793–4807

    Article  CAS  PubMed  Google Scholar 

  • Dong N et al (2017) Role of epigenetics in lung cancer heterogeneity and clinical implication. Semin Cell Dev Biol 64:18–25

    Article  CAS  PubMed  Google Scholar 

  • Eramo A et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15(3):504–514

    Article  CAS  PubMed  Google Scholar 

  • Gaponova AV et al (2016) A novel HSP90 inhibitor-drug conjugate to SN38 is highly effective in small cell lung cancer (SCLC). Clin Cancer Res 22(20):5120–5129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazdar AF (2018) Morphologic and other forms of heterogeneity in small cell lung cancer: what can we learn from them? J Thorac Oncol 13(2):148–150

    Article  PubMed  Google Scholar 

  • George J et al (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524(7563):47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindan R et al (2006) Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol 24(28):4539–4544

    Article  PubMed  Google Scholar 

  • Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381):306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutova M et al (2007) Identification of uPAR-positive chemoresistant cells in small cell lung cancer. PLoS One 2(2):243

    Article  CAS  Google Scholar 

  • Hassan KA (2018) Small cell lung cancer heterogeneity: elevated a notch above the rest! J Thorac Dis 10(2):554–556

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackman DM, Johnson BE (2005) Small-cell lung cancer. Lancet 366(9494):1385–1396

    Article  CAS  PubMed  Google Scholar 

  • Jiang F et al (2009) Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res 7(3):330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch LK et al (2008) Stem cell marker expression in small cell lung carcinoma and developing lung tissue. Hum Pathol 39(11):1597–1605

    Article  CAS  PubMed  Google Scholar 

  • Krystal G et al (1988) Multiple mechanisms for transcriptional regulation of the myc gene family in small-cell lung cancer. Mol Cel Biol 8(8):3373–3381

    CAS  Google Scholar 

  • Kubo T et al (2013) Subpopulation of small-cell lung cancer cells expressing CD133 and CD87 show resistance to chemotherapy. Cancer Sci 104(1):78–84

    Article  CAS  PubMed  Google Scholar 

  • Leelatian N et al (2017) Single cell analysis of human tissues and solid tumors with mass cytometry. Cytometry B Clin Cytom 92(1):68–78

    Article  CAS  PubMed  Google Scholar 

  • Lim JS et al (2017) Intratumoral heterogeneity generated by notch signaling promotes small cell lung cancer. Nature 545(7654):360–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv T et al (2012) Over-expression of LSD1 promotes proliferation, migration and invasion in non small cell lung cancer. PLoS One 7(4):e35065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marignol L (2017) Notch signalling: the true driver of small cell lung cancer? Transl Cancer Res 6(S7):S1191–S1196

    Article  Google Scholar 

  • Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15(4):338–344

    Article  CAS  PubMed  Google Scholar 

  • Mohammad HP, Kruger RG (2016) Antitumor activity of LSD1 inhibitors in lung cancer. Mol Cell Oncol 3(2):e1117700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakatsugawa M et al (2011) SOX2 is overexpressed in stem-like cells of human lung adenocarcinoma and augments the tumorigenicity. Lab Investig 91(12):1796–1804

    Article  CAS  PubMed  Google Scholar 

  • Notta F et al (2011) Evolution of human BCR–ABL1 lymphoblastic leukaemia-initiating cells. Nature 469(7330):362–367

    Article  CAS  PubMed  Google Scholar 

  • Osada H et al (2008) Roles of achaete-scute homologue 1 in DKK1 and E cadherin repression and neuroendocrine differentiation in lung cancer. Cancer Res 68(6):1647–1655

    Article  CAS  PubMed  Google Scholar 

  • Osborne JK et al (2013) NeuroD1 regulates survival and migration of neuroendocrine lung carcinomas via signaling molecules TrkB and NCAM. Proc Natl Acad Sci U S A 110(16):6524–6529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paumier A, Péchoux CL (2010) Radiotherapy in small-cell lung cancer: where should it go? Lung Cancer 69(2):133–140

    Article  PubMed  Google Scholar 

  • Peifer M et al (2012) Integrative genome analyses identify key somatic driver mutations of small cell lung cancer. Nat Genet 44(10):1104–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietanza MC et al (2016) A phase I trial of the Hedgehog inhibitor, sonidegib (LDE225), in combination with etoposide and cisplatin for the initial treatment of extensive stage small cell lung cancer. Lung Cancer 99:23–30

    Article  PubMed  Google Scholar 

  • Polley E et al (2016) Small cell lung cancer screen of oncology drugs, investigational agents, and gene and microRNA expression. J Natl Cancer Inst 108(10):djw122

    Article  PubMed Central  CAS  Google Scholar 

  • Rodriguez E, Lilenbaum RC (2010) Small cell lung cancer: past, present and future. Curr Oncol Rep 12(5):327–334

    Article  PubMed  Google Scholar 

  • Ross JS et al (2014) Next-generation sequencing reveals frequent consistent genomic alterations in small cell undifferentiated lung cancer. J Clin Pathol 67(9):772–776

    Article  CAS  PubMed  Google Scholar 

  • Rudin CM et al (2008) Novel systemic therapies for small cell lung cancer. J Natl Compr Cancer Netw 6(3):315–322

    Article  CAS  Google Scholar 

  • Sarvi S et al (2014) CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res 74(5):1554–1565

    Article  CAS  PubMed  Google Scholar 

  • Semenova EA et al (2015) Origins, genetic landscape, and emerging therapies of small cell lung cancer. Genes Dev 29(14):1447–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shackleton M et al (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5):822–829

    Article  CAS  PubMed  Google Scholar 

  • Shibata T et al (2009) Oncogenic mutation of PIK3CA in small cell lung carcinoma: a potential therapeutic target pathway for chemotherapy-resistant lung cancer. Cancer Lett 283(2):203–211

    Article  CAS  PubMed  Google Scholar 

  • Shivapurkar N et al (1999) Deletions of chromosome 4 at multiple sites are frequent in malignant mesothelioma and small cell lung carcinoma. Clin Cancer Res 5(1):17–23

    CAS  PubMed  Google Scholar 

  • Shue YT et al (2018) Tumor heterogeneity in small cell lung cancer defined and investigated in pre-clinical mouse models. Transl Lung Cancer Res 7(1):21–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh AK et al (2015) Tumor heterogeneity and cancer stem cell paradigm: updates in concept, controversies and clinical relevance. Int J Cancer 136(9):1991–2000

    Article  CAS  PubMed  Google Scholar 

  • Snitow ME et al (2015) Ezh2 represses the basal cell lineage during lung endoderm development. Development 142(1):108–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart CA, Byers LA (2015) Altering the course of small cell lung cancer: targeting cancer stem cells via LSD1 inhibition. Cancer Cell 28(1):4–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland KD, Berns A (2010) Cell of origin of lung cancer. Mol Oncol 4(5):397–403

    Article  PubMed  PubMed Central  Google Scholar 

  • Szczepny A et al (2017) The role of canonical and non-canonical Hedgehog signaling in tumor progression in a mouse model of small cell lung cancer. Oncogene 36(39):5544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T et al (1989) p53: a frequent target for genetic abnormalities in lung cancer. Science 246(4929):491–494

    Article  CAS  PubMed  Google Scholar 

  • Takebe N et al (2015) Targeting notch, hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 12(8):445–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyooka S et al (2003) The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat 21(3):229–239

    Article  CAS  PubMed  Google Scholar 

  • Umemura S et al (2014) Therapeutic priority of the PI3K/AKT/mTOR pathway in small cell lung cancers as revealed by a comprehensive genomic analysis. J Thorac Oncol 9(9):1324–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B et al (2010) Biologic characteristics of the side population of human small cell lung cancer cell line H446. Chin J Cancer 29(3):254–260

    Article  PubMed  Google Scholar 

  • Wang P et al (2013) Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One 8(3):57020

    Article  CAS  Google Scholar 

  • Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330

    Article  CAS  PubMed  Google Scholar 

  • Wilbertz T et al (2011) SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Mod Pathol 24(7):944–953

    Article  CAS  PubMed  Google Scholar 

  • Wistuba II et al (2000a) Molecular changes in the bronchial epithelium of patients with small cell lung cancer. Clin Cancer Res 6(7):2604–2610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wistuba II et al (2000b) High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res 60(7):1949–1960

    CAS  PubMed  Google Scholar 

  • Yu L et al (2018) Promiximab-duocarmycin, a new CD56 antibody-drug conjugates, is highly efficacious in small cell lung cancer xenograft models. Oncotarget 9(4):5197–5207

    Article  PubMed  Google Scholar 

  • Zhou S et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stemcells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prabavathy, D., Ramadoss, N. (2019). Heterogeneity of Small Cell Lung Cancer Stem Cells. In: Birbrair, A. (eds) Stem Cells Heterogeneity in Cancer. Advances in Experimental Medicine and Biology, vol 1139. Springer, Cham. https://doi.org/10.1007/978-3-030-14366-4_3

Download citation

Publish with us

Policies and ethics