Skip to main content

Chemical Recycling of Electronic-Waste for Clean Fuel Production

  • Chapter
  • First Online:
Book cover E-waste Recycling and Management

Abstract

Electronic-waste was the main waste stream raising concern to the researchers globally. Improper recycling and disposal techniques resulted in solemn effects on the atmosphere and public well-being. This chapter explains the systematic methods used for management of Electronic-waste. Electronic-waste managing would be an ideal start-up business platform toward energy production and metal recovery. The recycling pathways are designed by considering the current industrial reality and design strategies. Chemical recycling is a compilation of pyrolysis, catalytic cracking/upgrading, gasification, and chemolysis methods. Pyrolyzing of Electronic-waste prior to catalytic cracking method yielded high-quality oil. This oil can be further upgraded into clean fuels. Integrated process (pyrolysis and catalytic upgrading) results in considerable financial and ecological benefits during processing Electronic-waste into clean fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abduli MA, Naghib A, Yonesi M, Akbari A (2011) Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill. Environ Monit Assess 178:487–498

    Article  CAS  Google Scholar 

  • Abnisa F, Daud WMAW (2014) A review on co-pyrolysis of biomass: an optional technique to obtain high-grade pyrolysis oil. Energy Convers Manag 87:71–85

    Article  CAS  Google Scholar 

  • Balaz P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin/Heidelberg

    Google Scholar 

  • Balaz P, Achimovieova M, Balaz M, Billik P, Cherkezova-Zheleva Z, Criado JM et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571

    Article  CAS  Google Scholar 

  • Balde C, Wang F, Kuehr R, Huisman J (2015) The global electronic waste monitor. United Nations University, IAS–SCYCLE, Bonn

    Google Scholar 

  • Bhaskar T, Matsui T, Kaneko J, Uddin MA, Muto A, Sakata Y (2002) Novel calcium based sorbent (Ca-C) for the dehalogenation (Br, Cl) process during halogenated mixed plastic (PP/PE/PS/PVC and HIPS-Br) pyrolysis. Green Chem 4:372–375

    Article  CAS  Google Scholar 

  • Bian J, Bai H, Li W, Yin J, Xu H (2016) Comparative environmental life cycle assessment of waste mobile phone recycling in China. J Clean Prod 131:209–218

    Article  Google Scholar 

  • British Plastics Federation (2008) Oil consumption: what happens to plastics when the oil runs out and when will it run out. Available from: http://www.bpf.co.uk/press/Oil_Consumption.aspx

  • Buratti C, Barbanera M, Testarmata F, Fantozzi F (2015) Life cycle assessment of organic waste management strategies: an Italian case study. J Clean Prod 89:125–136

    Article  Google Scholar 

  • De-Souza RG, Climaco JCN, Sant’Anna AP, Rocha TB, do Valle RDB, Quelhas OLG (2016) Sustainability assessment and prioritisation of electronic waste management options in Brazil. Waste Manag 57:46–56

    Article  Google Scholar 

  • Erses-Yay AS (2015) Application of life cycle assessment (LCA) for municipal solid waste management: a case study of Sakarya. J Clean Prod 94:284–293

    Article  CAS  Google Scholar 

  • Freegard K, Tan G, Coggins-Wamtech C, Environmental DFD, Alger M, Cracknell P et al (2006) Develop a process to separate brominated flame retardants from WASTE ELECTRICAL AND ELECTRONIC EQUIPMENTS polymers. (Final Report). The Waste & Resources Action Programme, London

    Google Scholar 

  • Fujimori T, Takigami H, Agusa T, Eguchi A, Bekki K, Yoshida A, Terazono A, Ballesteros FC (2012) Impact of metals in surface matrices from formal and informal electronic-waste recycling around Metro Manila, the Philippines, and intra-Asian comparison. J Hazard Mater 221:139–146

    Article  Google Scholar 

  • Grause G, Karakita D, Ishibashi J, Kameda T, Bhaskar T, Yoshioka T (2011) TGMS investigation of brominated products from the degradation of brominated flame retardants in high-impact polystyrene. Chemosphere 85:368–373

    Article  CAS  Google Scholar 

  • Grause G, Fonseca JD, Tanaka H, Bhaskar T, Kameda T, Yoshioka T (2015) A novel process for the removal of bromine from styrene polymers containing brominated flame retardant. Polym Degrad Stab 112:86–93

    Article  CAS  Google Scholar 

  • Guo J, Guo J, Xu ZM (2009) Recycling of non-metallic fractions from waste printed circuit boards: a review. J Hazard Mater 168:567–590

    Article  CAS  Google Scholar 

  • Guo X, Xiang D, Duan G, Mou P (2010) A review of mechanochemistry applications in waste management. Waste Manag 30:4–10

    Article  Google Scholar 

  • Hall WJ, Williams PT (2006) Pyrolysis of brominated feedstock plastic in a fluidised bed reactor. J Anal Appl Pyrolysis 77:75–82

    Article  CAS  Google Scholar 

  • Hansen LA, Nielsen HP, Frandsen FJ, Dam-Johansen K, Hørlyck S, Karlsson A (2000) Influence of deposit formation on corrosion at a straw-fired boiler. Fuel Process Technol 64:189–209

    Article  CAS  Google Scholar 

  • Hong J, Shi W, Wang Y, Chen W, Li X (2015) Life cycle assessment of electronic waste treatment. Waste Manag 38:357–365

    Article  CAS  Google Scholar 

  • Hossain M, Al-Hamadani S, Rahman R (2015) Electronic waste: a challenge for sustainable development. J Health Pollut 5:550–555

    Google Scholar 

  • Huang Q, Liu W, Peng P, Huang W (2013) Reductive debromination of tetra bromobisphenol a by Pd/Fe bimetallic catalysts. Chemosphere 92:1321–1327

    Article  CAS  Google Scholar 

  • Huisman J, Magalini F, Kuehr R, Maurer C, Ogilvie S, Poll J et al (2008) Review of directive 2002/96 on waste electrical and electronic equipment (WASTE ELECTRICAL AND ELECTRONIC EQUIPMENTS). United Nations University, Bonn

    Google Scholar 

  • Ikhlayel M (2017) Environmental impacts and benefits of state-of-the-art technologies for electronic waste management. Waste Manag 68:458–474

    Article  Google Scholar 

  • Ikhlayel M, Higano Y, Yabar H, Mizunoya T (2016) Introducing an integrated municipal solid waste management system: assessment in Jordan. J Sustain Dev 9:43

    Article  Google Scholar 

  • Jiang P, Harney M, Song Y, Chen B, Chen Q, Chen T, Lazarus G, Dubois LH, Korzenski MB (2012) Improving the end-of-life for electronic materials via sustainable recycling methods. Procedia Environ Sci 16:485–490

    Article  CAS  Google Scholar 

  • Jin Y, Tao L, Chi Y, Yan J (2011) Conversion of bromine during thermal decomposition of printed circuit boards at high temperature. J Hazard Mater 186:707–712

    Article  CAS  Google Scholar 

  • Jung SH, Kim SJ, Kim JS (2012) Thermal degradation of acrylonitrile–butadiene– styrene (ABS) containing flame retardants using a fluidized bed reactor: the effects of ca-based additives on halogen removal. Fuel Process Technol 96:265–270

    Article  CAS  Google Scholar 

  • Leung A, Cai ZW, Wong MH (2006) Environmental contamination from electronic waste recycling at Guiyu, Southeast China. J Mater Cycles Waste Manage 8:21–33

    Article  CAS  Google Scholar 

  • Li J, Zeng X, Chen M, Ogunseitan OA, Stevels A (2015) “Control-Alt-Delete”: rebooting solutions for the electronic waste problem. Environ Sci Technol 49:7095–7108

    Article  CAS  Google Scholar 

  • Lopez A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A (2011) Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Process Technol 92:253–260

    Article  CAS  Google Scholar 

  • Lopez G, Ekiaga A, Amutio M, Bilbao J, Olazar M (2015) Effect of polyethylene co-feeding in the steam gasification of biomass in a conical spouted bed reactor. Fuel 153:393–401

    Article  CAS  Google Scholar 

  • McCann D, Wittmann A (2015) Solving the electronic waste problem (Step) green paper: E- waste Prevention, take-back system design and policy approaches. United Nations University/Step Initiative, Germany

    Google Scholar 

  • Miskolczi N, Hall WJ, Angyal A, Bartha L, Williams PT (2008) Production of oil with low organobromine content from the pyrolysis of flame retarded HIPS and ABS plastics. J Anal Appl Pyrolsis 83:115–123

    Article  CAS  Google Scholar 

  • Nnorom IC, Osibanjo O (2008a) Overview of electronic waste (electronic waste) management practices and legislations, and their poor applications in the developing countries. Resour Conserv Recycl 52:843–858

    Article  Google Scholar 

  • Nnorom IC, Osibanjo O (2008b) Sound management of brominated flame retarded (BFR) plastics from electronic wastes: state of the art and options in Nigeria. Resour Conserv Recycl 52:1362–1372

    Article  Google Scholar 

  • Ongondo FO, Williams ID, Cherrett TJ (2011) How are WASTE ELECTRICAL AND ELECTRONIC EQUIPMENTS doing? A global review of the management of electrical and electronic wastes. Waste Manag 31:714–730

    Article  CAS  Google Scholar 

  • Perez-Belis V, Bovea M, Ibanez-Fores V (2015) An in-depth literature review of the waste electrical and electronic equipment context: trends and evolution. Waste Manag Res 33:3–29

    Article  CAS  Google Scholar 

  • Rahmani M, Nabizadeh R, Yaghmaeian K, Mahvi AH, Yunesian M (2014) Estimation of waste from computers and mobile phones in Iran. Resour Conserv Recycl 87:21–29

    Article  Google Scholar 

  • Seitz J (2014) Analysis of existing electronic waste practices in MENA countries. The regional solid waste exchange of information and expertise network in Mashreq and Maghreb Countries (SWEEP-Net)

    Google Scholar 

  • SEPA (2011) Recycling and disposal of electronic waste: health hazards and environmental impacts. Naturvårdsverket, Stockholm

    Google Scholar 

  • Shen Y, Zhao R, Wang J, Chen X, Ge X, Chen M (2016) Waste-to-energy: De-halogenation of plastic-containing wastes. Waste Manag 49:287–303

    Article  CAS  Google Scholar 

  • Shen Y, Chen X, Ge X, Chen M (2018) Chemical pyrolysis of electronic waste plastics: char characterization. J Environ Manag 214:94–103

    Article  CAS  Google Scholar 

  • Shibasaki Y, Kamimori T, Kadokawa J, Hatano B, Tagaya H (2004) Decomposition reactions of plastic model compounds in sub and supercritical water. Polym Degrad Stab 83:481–485

    Article  CAS  Google Scholar 

  • Song Q, Li J (2015) A review on human health consequences of metals exposure to electronic waste in China. Environ Pollut 196:450–461

    Article  CAS  Google Scholar 

  • Song QB, Wang ZS, Li JH (2013) Sustainability evaluation of electronic waste treatment based on emergy analysis and the LCA method: a case study of a trial project in Macau. Ecol Indic 30:138–147

    Article  Google Scholar 

  • Starnes WH (2012) How and to what extent are free radicals involved in the nonoxidative thermal dehydrochlorination of poly (vinyl chloride)? J Vinyl Addit Technol 18:71–75

    Article  CAS  Google Scholar 

  • Stevels A, Huisman J, Wang F, Li J, Li B, Duan H (2013) Take back and treatment of discarded electronics: a scientific update. Front Environ Sci Eng 7:475–482

    Article  CAS  Google Scholar 

  • Thanh NP, Matsui Y (2013) Assessment of potential impacts of municipal solid waste treatment alternatives by using life cycle approach: a case study in Vietnam. Environ Monit Assess 185:7993–8004

    Article  Google Scholar 

  • Vehlow J, Bergfeldt B, Hunsinger H, Seifert H, Mark FE (2003) Bromine in waste incineration: partitioning and influence on metal volatilisation. Environ Sci Pollut Res Int 10:329–334

    Article  CAS  Google Scholar 

  • Vilaplana F, Karlsson S (2008) Quality concepts for the improved use of recycled polymeric materials: a review. Macromol Mater Eng 293:274–297

    Article  CAS  Google Scholar 

  • Wang Y, Zhang FS (2012) Degradation of brominated flame retardant in computer housing plastic by supercritical fluids. J Hazard Mater 205–206:156–163

    Article  Google Scholar 

  • Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Boni H (2005) Global perspectives on electronic waste. Environ Impact Assess Rev 25:436–458

    Article  Google Scholar 

  • William JH, Paul TW (2007) Separation and recovery of materials from scrap printed circuit boards. Res Conserv Recycl 51:691–709

    Article  Google Scholar 

  • Wu C, Williams PT (2013) Advanced thermal treatment of wastes for fuels, chemicals and materials recovery. In: Hester RE, Harrison RM (eds) Waste as a resource. The Royal Society of Chemistry, Cambridge, pp 1–43

    Google Scholar 

  • Wu H, Shen Y, Harada N, An Q, Yoshikawa K (2014) Production of pyrolysis oil with low bromine and antimony contents from plastic material containing brominated flame retardants and antimony trioxide. Energy Environ Res 4:105–118

    Article  Google Scholar 

  • Xue M, Kendall A, Xu Z, Schoenung JM (2015) Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining. Environ Sci Technol 49:940–947

    Article  CAS  Google Scholar 

  • Yan W, Hastings JT, Acharjee TC, Coronella CJ, Vásquez VR (2010) Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuel 24:4738–4742

    Article  CAS  Google Scholar 

  • Yu J, Sun L, Ma C, Qiao Y, Yao H (2016) Thermal degradation of PVC: a review. Waste Manag 48:300–314

    Article  CAS  Google Scholar 

  • Zhang S, Yoshikawa K, Nakagome H, Kamo T (2013) Kinetics of the steam gasification of a phenolic circuit board in the presence of carbonates. Appl Energy 101:815–821

    Article  CAS  Google Scholar 

  • Zhuang Y, Ahn S, Seyfferth AL, Masue-Slowey Y, Fendorf S, Luthy RG (2011) Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environ Sci Technol 45:4896–4903

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannappan Panchamoorthy Gopinath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arun, J., Gopinath, K.P. (2020). Chemical Recycling of Electronic-Waste for Clean Fuel Production. In: Khan, A., Inamuddin, Asiri, A. (eds) E-waste Recycling and Management. Environmental Chemistry for a Sustainable World, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-14184-4_6

Download citation

Publish with us

Policies and ethics