Skip to main content

Agricultural Service Mobile Robot Modeling and Control Using Artificial Fuzzy Logic and Machine Vision

  • Conference paper
  • First Online:
The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019) (AMLTA 2019)

Abstract

This paper represents modeling and control of an agricultural service skid steering mobile robot for the purposes of grass cutting using Proportional-Integral-Derivative (PID) controller and Fuzzy Logic techniques and feedback signals from sensors as IMU, encoders, and Machine Vision. The paper deals with the system modeling into two methods: The first is using Fuzzy modeling as a modeling tool for complex nonlinear system, the second is using MATLAB software system Identification Tool. The study Uses PID, Fuzzy logic controller and fuzzy self-tuning of PID controller to control the path tracking of the skid steering mobile robot and improve its response. Utilizing Machine vision provides better results than that of the IMU sensor and the encoders. The fuzzy self-tuning of PID controller shows better dynamic results than the fuzzy logic and PID controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hajjaj, S.S.H., Sahari, K.S.M.: Review of research in the area of agriculture mobile robots. In: Mat Sakim, H., Mustaffa, M. (eds) The 8th International Conference on Robotic, Vision, Signal Processing & Power Applications. Lecture Notes in Electrical Engineering, vol 291. Springer, Singapore (2014)

    Google Scholar 

  2. Monta, M.: Robots for bioproduction systems. IFAC Proc. Vol. 33(29), 1–11 (2000)

    Article  Google Scholar 

  3. Martinez, J.L., Mandow, A., Morales, J., Pedraza, S., Garcia-Cerezo, A.: Approximating kinematics for tracked mobile robots. Int. J. Robot. Res. 24(10), 867–878 (2005)

    Article  Google Scholar 

  4. Azar, A.T., Ammar, H.H., Barakat, M.H., Saleh, M.A., Abdelwahed, M.A.: Self-balancing robot modeling and control using two degree of freedom PID controller. In: International Conference on Advanced Intelligent Systems and Informatics. Springer, Cham (2018)‏

    Google Scholar 

  5. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 1, 28–44 (1973)

    Article  MathSciNet  Google Scholar 

  6. Mandow, A., Martinez, J.L., Morales, J., Blanco, J.L., Garcia-Cerezo, A., Gonzalez, J.: Experimental kinematics for wheeled skid-steer mobile robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007. IEEE (2007)‏

    Google Scholar 

  7. Nelles, O.: Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  8. Jakeman, A.J., Littlewood, I.G., Whitehead, P.G.: Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. J. Hydrol. 117(1-4), 275–300 (1990)

    Article  Google Scholar 

  9. Jelali, M., Kroll, A.: Hydraulic Servo-Systems: Modelling, Identification and Control. Springer, Heidelberg (2012)

    Google Scholar 

  10. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic, vol. 4. Prentice Hall, New Jersey (1995)

    MATH  Google Scholar 

  11. Salimi, A., Subaşı, M., Buldu, L., Karataş, C.: Prediction of flow length in injection molding for engineering plastics by fuzzy logic under different processing conditions. Iran. Polym. J. 22(1), 33–41 (2013)

    Article  Google Scholar 

  12. Azadegan, A., Porobic, L., Ghazinoory, S., Samouei, P., Kheirkhah, A.S.: Fuzzy logic in manufacturing: a review of literature and a specialized application. Int. J. Prod. Econ. 132(2), 258–270 (2011)

    Article  Google Scholar 

  13. Fu, K. (ed.): Learning Systems and Intelligent Robots. Springer, London (2012)

    Google Scholar 

  14. He, S.-Z., et al.: Fuzzy self-tuning of PID controllers. Fuzzy Sets Syst. 56(1), 37–46 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barakat, M.H., Azar, A.T., Ammar, H.H. (2020). Agricultural Service Mobile Robot Modeling and Control Using Artificial Fuzzy Logic and Machine Vision. In: Hassanien, A., Azar, A., Gaber, T., Bhatnagar, R., F. Tolba, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019). AMLTA 2019. Advances in Intelligent Systems and Computing, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-030-14118-9_46

Download citation

Publish with us

Policies and ethics