Skip to main content

A New Efficient Power Management Interface for Hybrid Electromagnetic-Piezoelectric Energy Harvesting System

  • Conference paper
  • First Online:
16th International Conference on Information Technology-New Generations (ITNG 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 800))

Abstract

Harvesting high output power from ambient vibration energy using a hybrid piezoelectric and electromagnetic equivalent circuit is a verified technique. This paper introduces a novel interface circuit for the hybrid system, which has high efficiency and output power. The proposed interface uses a parallel-synchronized switch in the standard AC-DC converter for the piezoelectric energy harvester part, which can greatly improve the output power and efficiency. Moreover, a DC-DC boost converter is used to enhance the extracted energy from the electromagnetic energy harvesting section due to its low output power. The defined interface model implemented on a typical hybrid piezoelectric-electromagnetic system and the simulation results confirm the enhancement of output power to 250 mW along with the efficiency of 80%. The efficiency of the proposed hybrid harvester enhanced 47.36% and 92% in comparison to the standard hybrid and piezoelectric system respectively. The effectiveness of the hybrid circuit confirmed while its extracted power is 50 mW more than the single piezoelectric system with the switch interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ge Shi, Y.X., Ye, Y., Qian, L., Li, Q.: An efficient self-powered synchronous electric charge extraction interface circuit for piezoelectric energy harvesting systems. J. Intell. Mater. Syst. Struct. 27(16), 2160–2178 (2016)

    Article  Google Scholar 

  2. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16(3), R1–R21 (2007)

    Article  Google Scholar 

  3. Dallago, E., Danioni, A., Marchesi, M., Nucita, V., Venchi, G.: A self-powered electronic interface for electromagnetic energy harvester. IEEE Trans. Power Electron. 26(11), 3174–3182 (2011)., Art. no. 5756243

    Article  Google Scholar 

  4. Tzeno Galchev, E.E.A., Najaf, K.: A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations. Microelectromech. Syst. 21(6), 1311–1320 (2012)

    Article  Google Scholar 

  5. Cao, X., Chiang, W.-J., King, Y.-C., Lee, Y.-K.: Electromagnetic energy harvesting circuit with feedforward and feedback DC–DC PWM boost converter for vibration power generator system. IEEE Trans. Power Electron. 22(2), 679–685 (2007)

    Article  Google Scholar 

  6. Liang, J.: A systematic investigation on piezoelectric energy harvesting with emphasis on interface circuits. Chinese University of Hong Kong (2010)

    Google Scholar 

  7. Badel, A., Guyomar, D., Lefeuvre, E., Richard, C.: Piezoelectric energy harvesting using a synchronized switch technique. J. Intell. Mater. Syst. Struct. 17(8–9), 831–839 (2006b)

    Article  Google Scholar 

  8. Guyomar, D., Badel, A., Lefeuvre, E., Richard, C.: Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52(4), 584–595 (2005)

    Article  Google Scholar 

  9. Kumari, S., Sahu, S.S., Gupta, B.: Efficient SSHI circuit for piezoelectric energy harvester uses one shot pulse boost converter. Analog Integr. Circ. Sig. Process. 97, 545–555 (2018)

    Article  Google Scholar 

  10. Badel, A., Benayad, A., Lefeuvre, E., Lebrun, L., Richard, C., Guyomar, D.: Single crystals and nonlinear process for outstanding vibration-powered electrical generators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 53(4), 673–684 (2006)

    Article  Google Scholar 

  11. Lallart, M., Guyomar, D.: An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output. Smart Mater. Struct. 17(3), 035030 (2008)

    Article  Google Scholar 

  12. Ramadass, Y.K., Chandrakasan, A.P.: An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J. Solid State Circuits. 45(1), 189–204 (2010)

    Article  Google Scholar 

  13. Wu, Y., Badel, A., Formosa, F., Liu, W., Agbossou, A.: Self-powered optimized synchronous electric charge extraction circuit for piezoelectric energy harvesting. J. Intell. Mater. Syst. Struct. 25(17), 2165–2176 (2014)

    Article  Google Scholar 

  14. Liang, J., Liao, W.-H.: Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems. IEEE Trans. Ind. Electron. 59(4), 1950–1960 (2012)

    Article  Google Scholar 

  15. Wang, S.-W., Ke, Y.-W., Huang, P.-C., Hsieh, P.-H.: Electromagnetic energy harvester interface design for wearable applications. IEEE Trans. Circuits Syst. II Express Briefs. 65(5), 667–671 (2018)

    Article  Google Scholar 

  16. Rahimi, A., Zorlu, O., Kulah, H., Muhtaroglu, A.: An interface circuit prototype for a vibration-based electromagnetic energy harvester. In: Energy Aware Computing (ICEAC), 2010 International Conference on, IEEE, pp. 1–4 (2010)

    Google Scholar 

  17. Szarka, G.D., Burrow, S.G., Proynov, P.P., Stark, B.H.: Maximum power transfer tracking for ultralow-power electromagnetic energy harvesters. IEEE Trans. Power Electron. 29(1), 201–212 (2014)

    Article  Google Scholar 

  18. Rahimi, A., Zorlu, Ö., Muhtaroğlu, A., Külah, H.: An electromagnetic energy harvesting system for low frequency applications with a passive interface ASIC in standard CMOS. Sensors Actuators A Phys. 188, 158–166 (2012)

    Article  Google Scholar 

  19. Rahimi, A., Zorlu, Ö., Muhtaroğlu, A., Külah, H.: A compact electromagnetic vibration harvesting system with high performance interface electronics. Procedia Eng. 25, 215–218 (2011)

    Article  Google Scholar 

  20. Sriramdas, R., Pratap, R.: An experimentally validated lumped circuit model for piezoelectric and electrodynamic hybrid harvesters. IEEE Sensors J. 18(6), 2377–2384 (2018)

    Article  Google Scholar 

  21. Yu, H., Zhou, J., Yi, X., Wu, H., Wang, W.: A hybrid micro vibration energy harvester with power management circuit. Microelectron. Eng. 131, 36–42 (2015)

    Article  Google Scholar 

  22. Uluşan, H., Chamanian, S., Pathirana, W., Zorlu, Ö., Muhtaroğlu, A., Külah, H.: A triple hybrid micropower generator with simultaneous multi-mode energy harvesting. Smart Mater. Struct. 27(1), 014002 (2017)

    Article  Google Scholar 

  23. Edwards, B., Aw, K.C., Hu, A.P., Tang, L.: Hybrid electromagnetic-piezoelectric transduction for a frequency up-converted energy harvester. In: Advanced Intelligent Mechatronics (AIM), 2015 IEEE International Conference on, IEEE, pp. 1149–1154 (2015)

    Google Scholar 

  24. Cheng, S., Wang, N., Arnold, D.P.: Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. J. Micromech. Microeng. 17(11), 2328–2335 (2007)

    Article  Google Scholar 

  25. Yang, Y., Tang, L.: Equivalent circuit modeling of piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 20(18), 2223–2235 (2009)

    Article  Google Scholar 

  26. Park, J.C., Bang, D.H., Park, J.Y.: Micro-fabricated electromagnetic power generator to scavenge low ambient vibration. IEEE Trans. Magn. 46(6), 1937–1942 (2010)

    Article  Google Scholar 

  27. Moore, H.: MATLAB for Engineers. Pearson (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sara Zolfaghar Tehrani , Hossein Ranjbar , Peter Vial or Prashan Premaratne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tehrani, S.Z., Ranjbar, H., Vial, P., Premaratne, P. (2019). A New Efficient Power Management Interface for Hybrid Electromagnetic-Piezoelectric Energy Harvesting System. In: Latifi, S. (eds) 16th International Conference on Information Technology-New Generations (ITNG 2019). Advances in Intelligent Systems and Computing, vol 800. Springer, Cham. https://doi.org/10.1007/978-3-030-14070-0_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14070-0_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14069-4

  • Online ISBN: 978-3-030-14070-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics