Skip to main content

Degenerative Mitral Regurgitation

  • Chapter
  • First Online:

Abstract

Degenerative mitral valve disease consists of a spectrum, with the mildest form recognized as fibroelastic deficiency and the most severe form as Barlow’s disease. Both forms, through different mechanisms, result in thickened leaflet segments that prolapse and billow resulting in mitral regurgitation. These disease processes also lead to changes in mitral annular shape and function. Management of these diseases will differ depending on the extent of valve involvement. Most surgeons can surgically correct mild disease affecting a single P2 segment whereas complex disease affecting both the anterior and posterior leaflets or multiple segments requires an expert mitral valve surgeon. Three-dimensional echocardiography helps determine the location and extent of the lesion. Parametric models are color-encoded topographic displays of mitral valve anatomy from three-dimensional echocardiographic images. These models improve assessment of valve anatomy and provide quantitative measurements that can be used to determine the etiology of the valve abnormality and can therefore be used to direct treatment. Three-dimensional echocardiography also improves quantification of mitral regurgitation severity. This is especially true for degenerative mitral valve disease where the regurgitant orifice is frequently eccentric resulting in an eccentric regurgitant jet. This is achieved by improving the calculation of the effective regurgitant orifice area with vena contracta area or proximal isovelocity surface area, and/or by measuring the true 3D anatomical regurgitant orifice area. Overall, three-dimensional echocardiography improves diagnosis and management of patients with degenerative mitral valve disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Griffin BP. Myxomatous mitral valve disease. In: Otto CM, Bonow RO, editors. Valvular heart disease. Philadelphia: Saunders Elsevier; 2009. p. 243–59.

    Google Scholar 

  2. Tsang W, Freed BH, Lang RM. Three-dimensional anatomy of the aortic and mitral valves. In: Otto CM, Bonow R, editors. Valvular heart disease: a companion to Bruanwald’s heart disease. 4th ed. Philadelphia: Saunders Elsevier; 2014. p. 488.

    Google Scholar 

  3. Anyanwu AC, Adams DH. Etiologic classification of degenerative mitral valve disease: Barlow’s disease and fibroelastic deficiency. Semin Thorac Cardiovasc Surg. 2007;19:90–6.

    Article  Google Scholar 

  4. Adams DH, Anyanwu AC, Sugeng L, Lang RM. Degenerative mitral valve regurgitation: surgical echocardiography. Curr Cardiol Rep. 2008;10:226–32.

    Article  Google Scholar 

  5. Gillinov AM, Cosgrove DM, Blackstone EH, et al. Durability of mitral valve repair for degenerative disease. J Thorac Cardiovasc Surg. 1998;116:734–43.

    Article  CAS  Google Scholar 

  6. Lee EM, Shapiro LM, Wells FC. Superiority of mitral valve repair in surgery for degenerative mitral regurgitation. Eur Heart J. 1997;18:655–63.

    Article  CAS  Google Scholar 

  7. Sugeng L, Shernan SK, Salgo IS, et al. Live 3-dimensional transesophageal echocardiography initial experience using the fully-sampled matrix array probe. J Am Coll Cardiol. 2008;52:446–9.

    Article  Google Scholar 

  8. Chandra S, Salgo IS, Sugeng L, et al. Characterization of degenerative mitral valve disease using morphologic analysis of real-time three-dimensional echocardiographic images: objective insight into complexity and planning of mitral valve repair. Circ Cardiovasc Imaging. 2011;4:24–32.

    Article  Google Scholar 

  9. Tsang W, Weinert L, Sugeng L, et al. The value of three-dimensional echocardiography derived mitral valve parametric maps and the role of experience in the diagnosis of pathology. J Am Soc Echocardiogr. 2011;24(8):860–7.

    Article  Google Scholar 

  10. La Canna G, Arendar I, Maisano F, et al. Real-time three-dimensional transesophageal echocardiography for assessment of mitral valve functional anatomy in patients with prolapse-related regurgitation. Am J Cardiol. 2011;107:1365–74.

    Article  Google Scholar 

  11. Carpentier A. Cardiac valve surgery—the “French correction”. J Thorac Cardiovasc Surg. 1983;86:323–37.

    CAS  PubMed  Google Scholar 

  12. Shah PM, Raney AA. Echocardiography in mitral regurgitation with relevance to valve surgery. J Am Soc Echocardiogr. 2011;24:1086–91.

    Article  Google Scholar 

  13. Tamborini G, Muratori M, Maltagliati A, Galli CA, Naliato M, Zanobini M, Alamanni F, Salvi L, Sisillo E, Fiorentini C, Pepi M. Preoperative transthoracic real-time three-dimensional echocardiography in patients undergoing mitral valve repair: accuracy in cases with simple vs complex prolapse lesion. Eur J Echocardiogr. 2010;11:778–85.

    Article  Google Scholar 

  14. Gutierrez-Chico JL, Zamorano Gomez JL, Rodrigo-Lopez JL, et al. Accuracy of real time 3-dimensional echocardiography in the assessment of mitral prolapse: is transesophageal echocardiography still mandatory? Am Heart J. 2008;155:694–8.

    Article  Google Scholar 

  15. Gripari P, Mapelli M, Bellacosa I, et al. Transthoracic echocardiography in patients undergoing mitral valve repair: comparison of new transthoracic techniques to 2D transesophageal echocardiography in the localization of mitral valve prolapse. Int J Cardiovasc Imaging. 2018;34(7):1099–107. https://doi.org/10.1007/s10554-018-1324-2.

    Article  PubMed  Google Scholar 

  16. Pepi M, Tamborini G, Maltagliati A, et al. Head-to head comparison of two- and three-dimensional transthoracic and transesophageal echocardiography in the localization of mitral valve prolapse. J Am Coll Cardiol. 2006;48:2424–30.

    Article  Google Scholar 

  17. Salgo IS, Gorman JH 3rd, Gorman RC, et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation. 2002;106:711–7.

    Article  Google Scholar 

  18. Levine RA, Handschumacher MD, Sanfilippo AJ, et al. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation. 1989;80:589–98.

    Article  CAS  Google Scholar 

  19. Watanabe N, Ogasawara Y, Yamaura Y, et al. Mitral annulus flattens in ischemic mitral regurgitation: geometric differences between inferior and anterior myocardial infarction: a real-time 3-dimensional echocardiographic study. Circulation. 2005;112:I458–62.

    Article  Google Scholar 

  20. Lang RM, Mor-Avi V, Dent JM, Kramer CM. Three-dimensional echocardiography: is it ready for everyday clinical use? JACC Cardiovasc Imaging. 2009;2:114–7.

    Article  Google Scholar 

  21. Gorman JH 3rd, Gupta KB, Streicher JT, et al. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovasc Surg. 1996;112:712–26.

    Article  Google Scholar 

  22. Lang RM, Adams DH. 3D echocardiographic quantification in functional mitral regurgitation. JACC Cardiovasc Imaging. 2012;5:346–7.

    Article  Google Scholar 

  23. Little SH, Ben Zekry S, Lawrie GM, Zoghbi WA. Dynamic annular geometry and function in patients with mitral regurgitation: insight from three-dimensional annular tracking. J Am Soc Echocardiogr. 2010;23:872–9.

    Article  Google Scholar 

  24. Jassar AS, Vergnat M, Jackson BM, et al. Regional annular geometry in patients with mitral regurgitation: implications for annuloplasty ring selection. Ann Thorac Surg. 2014;97:64–70.

    Article  Google Scholar 

  25. Ben Zekry S, Lang RM, Sugeng L, et al. Mitral annulus dynamics early after valve repair: preliminary observations of the effect of resectional versus non-resectional approaches. J Am Soc Echocardiogr. 2011;24:1233–42.

    Article  Google Scholar 

  26. Grewal J, Suri R, Mankad S, et al. Mitral annular dynamics in myxomatous valve disease: new insights with real-time 3-dimensional echocardiography. Circulation. 2010;121:1423–31.

    Article  Google Scholar 

  27. Nishimura RA, Otto C. 2014 ACC/AHA valve guidelines: earlier intervention for chronic mitral regurgitation. Heart. 2014;100(12):905–7.

    Article  Google Scholar 

  28. Bhave NM, Lang RM. Quantitative echocardiographic assessment of native mitral regurgitation: two- and three-dimensional techniques. J Heart Valve Dis. 2011;20:483–92.

    PubMed  Google Scholar 

  29. Kahlert P, Plicht B, Schenk IM, Janosi RA, Erbel R, Buck T. Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr. 2008;21:912–21.

    Article  Google Scholar 

  30. Little SH, Pirat B, Kumar R, et al. Three-dimensional color Doppler echocardiography for direct measurement of vena contracta area in mitral regurgitation: in vitro validation and clinical experience. JACC Cardiovasc Imaging. 2008;1:695–704.

    Article  Google Scholar 

  31. Zeng X, Levine RA, Hua L, et al. Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ Cardiovasc Imaging. 2011;4:506–13.

    Article  Google Scholar 

  32. Marsan NA, Westenberg JJ, Ypenburg C, et al. Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging. 2009;2:1245–52.

    Article  Google Scholar 

  33. Yosefy C, Hung J, Chua S, et al. Direct measurement of vena contracta area by real-time 3-dimensional echocardiography for assessing severity of mitral regurgitation. Am J Cardiol. 2009;104:978–83.

    Article  Google Scholar 

  34. Shiota T, Jones M, Delabays A, et al. Direct measurement of three-dimensionally reconstructed flow convergence surface area and regurgitant flow in aortic regurgitation: in vitro and chronic animal model studies. Circulation. 1997;96:3687–95.

    Article  CAS  Google Scholar 

  35. Matsumura Y, Saracino G, Sugioka K, et al. Determination of regurgitant orifice area with the use of a new three-dimensional flow convergence geometric assumption in functional mitral regurgitation. J Am Soc Echocardiogr. 2008;21:1251–6.

    Article  Google Scholar 

  36. Shiota T, Sinclair B, Ishii M, et al. Three-dimensional reconstruction of color Doppler flow convergence regions and regurgitant jets: an in vitro quantitative study. J Am Coll Cardiol. 1996;27:1511–8.

    Article  CAS  Google Scholar 

  37. Little SH, Igo SR, Pirat B, et al. In vitro validation of real-time three-dimensional color Doppler echocardiography for direct measurement of proximal isovelocity surface area in mitral regurgitation. Am J Cardiol. 2007;99:1440–7.

    Article  Google Scholar 

  38. Chandra S, Salgo IS, Sugeng L, et al. A three-dimensional insight into the complexity of flow convergence in mitral regurgitation: adjunctive benefit of anatomic regurgitant orifice area. Am J Physiol Heart Circ Physiol. 2011;301(3):H1015–24.

    Article  CAS  Google Scholar 

  39. Altiok E, Hamada S, van Hall S, et al. Comparison of direct planimetry of mitral valve regurgitation orifice area by three-dimensional transesophageal echocardiography to effective regurgitant orifice area obtained by proximal flow convergence method and vena contracta area determined by color Doppler echocardiography. Am J Cardiol. 2011;107:452–8.

    Article  Google Scholar 

  40. Lodato JA, Weinert L, Baumann R, et al. Use of 3-dimensional color Doppler echocardiography to measure stroke volume in human beings: comparison with thermodilution. J Am Soc Echocardiogr. 2007;20:103–12.

    Article  Google Scholar 

  41. Pemberton J, Jerosch-Herold M, Li X, et al. Accuracy of real-time, three-dimensional Doppler echocardiography for stroke volume estimation compared with phase-encoded MRI: an in vivo study. Heart. 2008;94:1212–3.

    Article  CAS  Google Scholar 

  42. Thavendiranathan P, Liu S, Datta S, et al. Automated quantification of mitral inflow and aortic outflow stroke volumes by three-dimensional real-time volume color-flow Doppler transthoracic echocardiography: comparison with pulsed-wave Doppler and cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2012;25:56–65.

    Article  Google Scholar 

  43. Buck T, Plicht B, Kahlert P, Schenk IM, Hunold P, Erbel R. Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal isovelocity surface area method. J Am Coll Cardiol. 2008;52:767–78.

    Article  Google Scholar 

  44. Le Tourneau T, Messika-Zeitoun D, Russo A, et al. Impact of left atrial volume on clinical outcome in organic mitral regurgitation. J Am Coll Cardiol. 2010;56:570–8.

    Article  Google Scholar 

  45. Rusinaru D, Tribouilloy C, Grigioni F, et al. Left atrial size is a potent predictor of mortality in mitral regurgitation due to flail leaflets: results from a large international multicenter study. Circ Cardiovasc Imaging. 2011;4:473–81.

    Article  Google Scholar 

  46. Tribouilloy C, Grigioni F, Avierinos JF, et al. Survival implication of left ventricular end-systolic diameter in mitral regurgitation due to flail leaflets a long-term follow-up multicenter study. J Am Coll Cardiol. 2009;54:1961–8.

    Article  Google Scholar 

  47. Tribouilloy C, Rusinaru D, Grigioni F, et al. Long-term mortality associated with left ventricular dysfunction in mitral regurgitation due to flail leaflets: a multicenter analysis. Circ Cardiovasc Imaging. 2014;7:363–70.

    Article  Google Scholar 

  48. Wu VC, Takeuchi M, Kuwaki H, et al. Prognostic value of LA volumes assessed by transthoracic 3D echocardiography: comparison with 2D echocardiography. JACC Cardiovasc Imaging. 2013;6:1025–35.

    Article  Google Scholar 

  49. Mor-Avi V, Jenkins C, Kuhl HP, et al. Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. JACC Cardiovasc Imaging. 2008;1:413–23.

    Article  Google Scholar 

  50. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popovic ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61:77–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Tsang .

Editor information

Editors and Affiliations

Electronic Supplementary Material

(Left) Transthoracic 3DE visualization of a flail P3 scallop with ruptured chordae using a volume rendered en face view of the mitral valve from the atrial perspective (AVI 27551 kb)

(Right) Transesophageal 3DE visualization of a flail P3 scallop with ruptured chordae using a volume rendered en face view of the mitral valve from the atrial perspective Left (AVI 2799 kb)

(Left) Volume rendered en face view from the atrial perspective of a transesophageal 3DE data set of the mitral valve (A cleft-like indentation of the posterior leaflet is present in P2 (AVI 10823 kb)

(Right) volume rendered longitudinal cut plane at A2-P2 level (AVI 8265 kb)

Volume rendered en face view from the atrial perspective of a transesophageal 3DE data set of the mitral valve in a patient with P2 P3 prolapse and ruptured chords (AVI 9468 kb)

(Left) Volume rendered en face view of the mitral valve from the atrial perspective obtained from a 3DE data set in a patient with P2 flail and ruptured chords (AVI 12576 kb)

(Right), Volume rendered longitudinal cut plane at the level of A2-P2 obtained from a transthoracic 3DE data set in a patient with P2 flail and ruptured chords (AVI 11750 kb)

192445_2_En_9_MOESM8_ESM.avi

Volume rendered transesophageal 3DE data set of the mitral valve in a patient with P2 flail and multiple ruptured chords (AVI 651 kb)

Volume rendered transesophageal 3DE data set of the mitral valve in a patient with ruptured chords and a cleft-like indentation splitting a large P2 prolapse (AVI 1195 kb)

Volume rendered transesophageal 3DE data set of the mitral valve in a patient with A2 flail and multiple ruptured chords (AVI 2235 kb)

Volume rendered transesophageal 3DE data set of the mitral valve in a patient with Barlow disease, medial commissural flail and multiple ruptured chords (AVI 603 kb)

Video 9.5

Volume rendered transesophageal 3DE data set of the mitral valve in a patient with P2 flail and multiple ruptured chords (AVI 651 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsang, W., Lang, R.M. (2019). Degenerative Mitral Regurgitation. In: Badano, L., Lang, R., Muraru, D. (eds) Textbook of Three-Dimensional Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-030-14032-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14032-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14030-4

  • Online ISBN: 978-3-030-14032-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics