Skip to main content

Phycoremediation of Petroleum Hydrocarbon-Polluted Sites: Application, Challenges, and Future Prospects

  • Chapter
  • First Online:
Application of Microalgae in Wastewater Treatment

Abstract

Impoverished communities everywhere in the world face challenges with respect to the treatment of wastewater. In particular, rural areas and remote communities with low socioeconomic conditions may lack conventional centralized wastewater treatment systems. As a result, in many instances, wastewater may be disposed without appropriate treatment, thus contaminating drinking water resources. Even if the communities choose a minimal effort and cost system for wastewater treatment, existing decontamination techniques do not provide complete reduction in biodegradable organic materials, pathogens, nutrients, etc., from the wastewater. Particularly, wastewater containing petrochemical hydrocarbons is of major concern under varying climatic conditions because of their high sensitivity to subsurface variability, which enables the pollutants to spread widely. Thus, engineered bioremediation is a promising cost-effective technique that is widely used to accelerate degradation and biotransformation of different pollutants. Phycoremediation is a technique using algae through various mechanisms for pollutant removal or biotransformation that includes nutrients, heavy metals, hydrocarbons, and pesticides. In addition to the removal of pollutants, this mechanism yields algal biomass as an interesting raw material for a diversity of valuable products and biofuel. In this book chapter, we give a comprehensive compilation of existing knowledge and future prospects of algal application in remediation of petrochemical hydrocarbon pollution. Further, this chapter discusses the biogeochemical pathway leading to degradation of petrochemical-polluted soils and groundwater using phycoremediation techniques. The emphasis of the chapter is on present practical applications and the technological constraints to employing sustainable methods. The knowledge pool of this chapter will help in applying decontamination techniques to petrochemical-polluted wastewater and the soil–water system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhishek GPK, Yadav BK, Amandeep TAS, Kataria S, Kumar S (2018a) Phytoremediation of toluene polluted groundwater under nutrient loading using constructed wetlands. poster presentation (B33G-2766) in AGU Fall Meeting 2018 held in Washington DC, USA during 10–14 Dec 2018

    Google Scholar 

  • Abhishek YBK, Gupta PK (2018b) Morphological variations in unsaturated porous media due to LNAPL contamination. Poster in Japan Geoscience Union (JpGU) Chiba-city, Japan, May 20–24 2018

    Google Scholar 

  • Allgaier M, Riebesell U, Vogt M, Thyrhaug R, Grossart HP (2008) Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study. Biogeosciences 5:1007–1022

    CAS  Google Scholar 

  • Al-Turki AI (2009) Microbial polycyclic aromatic hydrocarbons degradation in soil. Res J Environ Toxicol 3:1–8

    CAS  Google Scholar 

  • Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ (2009) Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc Natl Acad Sci USA 106:17071–17076

    CAS  Google Scholar 

  • Arnot JA, Mackay D, Parkerton TF, Zaleski RT, Warren CS (2010) Multimedia modeling of human exposure to chemical substances: the roles of food web biomagnification and biotransformation. Environ Toxicol Chem 29(1):45–55

    CAS  Google Scholar 

  • Ayolabi EA, Folorunso AF, Kayode OT (2013) Integrated geophysical and geochemical methods for environmental assessment of municipal dumpsite system. Int J Geosci 4:850–862

    Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:180. https://doi.org/10.1007/s11274-016-2137-x

    Article  CAS  Google Scholar 

  • Babu M (2011) Effect of algal biofilm and operational conditions on nitrogen removal in wastewater stabilization ponds. PhD Dissertation, Wageningen University, Netherlands

    Google Scholar 

  • Basu S, Yadav BK, Mathur S (2015) Enhanced bioremediation of BTEX contaminated groundwater in pot-scale wetlands. Environ Sci Pollut Res 22(24):20041–20049

    CAS  Google Scholar 

  • Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32(21):3379–3385. https://doi.org/10.1021/es9706817

    Article  CAS  Google Scholar 

  • Caliman FA, Robu BM, Smaranda C, Pavel VL, Gavrilescu M (2011) Soil and groundwater cleanup: benefits and limits of emerging technologies. Clean Techn Environ Policy 13(2):241–268

    Google Scholar 

  • Carlsson AS, van Beilen JB, Möller R, Clayton D (2007) Micro- and macro-algae: utility for industrial applications. In: Bowles D (ed) Outputs from the EPOBIO: Realising the economic potential of sustainable resources – bioproducts from non-food crops project. CNAP, University of York

    Google Scholar 

  • Cerniglia CE, Gibson DT, van Baalen C (1979) Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem Biophys Res Commun 88:50–58

    CAS  Google Scholar 

  • Cerniglia CE, Gibson DT, van Baalen C (1980a) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  • Cerniglia CE, van Baalen C, Gibson DT (1980b) Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., strain JCM. J Gen Microbiol 116:485–494

    CAS  Google Scholar 

  • Cottin N, Merlin G (2008) Removal of PAHs from laboratory columns simulating the humus upper layer of vertical flow constructed wetlands. Chemosphere 73:711–716

    CAS  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    CAS  Google Scholar 

  • de Jaeger L, Verbeek REM, Draaisma RB (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol Biofuels 7:69. https://doi.org/10.1186/1754-6834-7-69

    Article  CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    CAS  Google Scholar 

  • Dobson R, Schroth MH, Zeyer J (2007) Effect of water-table fluctuation on dissolution on and biodegradation of a multi-component, light nonaqueous-phase liquid. J Contam Hydrol 94:235–248

    CAS  Google Scholar 

  • Dzantor EK (2007) Phytoremediation: the state of rhizosphere “engineering” for accelerated rhizodegradation of xenobiotic contaminants. J Chem Technol Biotechnol 82(3):228–232. https://doi.org/10.1002/jctb.1662

    Article  CAS  Google Scholar 

  • Essaid HI, Bekins BA, Cozzarelli IM (2015) Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding. Water Resour Res 51(7):4861–4902

    CAS  Google Scholar 

  • Fernandez SJ, Ceron GM, Sanchez MA (2004) Pilot-plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fed-batch mode. Biotechnol Prog 20:728–736

    Google Scholar 

  • Fijani E, Nadiri AA, Moghaddam AA, Tsai FTC, Dixon B (2013) Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran. J Hydrol 503:89–100

    CAS  Google Scholar 

  • Fuentes S, Méndez V, Aguila P, Seeger M (2014) Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol 98:4781–4794

    CAS  Google Scholar 

  • Gupta PK, Joshi P (2017) Assessing groundwater resource vulnerability by coupling GIS based DRASTIC and solute transport model in Ajmer District, Rajasthan. J Geol Soc India (Springer). https://doi.org/10.1007/s12594-018-0958-y

  • Gupta PK, Yadav BK, Hassanizadeh SM (2017) Engineered bioremediation of LNAPL polluted soil-water resources under changing climatic conditions. Proceedings of international conference on modeling of environmental and water resources systems (ICMEWRS-2017), HBTU Kanpur, 24–26th March, 2017 (ISBN 978-93-85926-53-2)

    Google Scholar 

  • Gupta PK, Yadav BK (2017a) Role of climatic variability on fate and transport of LNAPL pollutants in subsurface. Session H060: groundwater response to climate change and variability, AGU fall meeting 2017, New Orleans, USA. (Abstract ID: 220494)

    Google Scholar 

  • Gupta PK, Yadav BK (2017b) Chapter 8: Effects of climatic variation on dissolution of LNAPL pollutants in subsurface environment. In: Climate change resource conservation and sustainability strategies. DBH Publishers and Distributors, New Delhi. isbn:9789384871086

    Google Scholar 

  • Gupta PK, Sharma D (2018) Assessments of hydrological and hydro-chemical vulnerability of groundwater in semi-arid regions of Rajasthan, India. Sustain Water Resour Manag:1–15. https://doi.org/10.1007/s40899-018-0260-6

  • Gupta PK, Abhishek YBK (2018a) Chapter 5: Impact of hydrocarbon pollutants on partially saturated soil media in batch system: morphological analysis using SEM techniques. In: Water quality management. Water science and technology library, vol 79. Springer. isbn:978-981-10-5794-6

    Google Scholar 

  • Gupta PK, Ranjan S, Kumar D (2018b) Chapter 2: Groundwater pollution by emerging industrial pollutants and its remediation techniques. In: Recent advances in environmental management, vol 1. CRC Press, Taylor & Francis Group. isbn:9780815383147

    Google Scholar 

  • Gupta PK, Yadav B, Yadav BK (2018c) Transport of LNAPL and biofilm growth in subsurface under dynamic groundwater conditions. C001723-Oral presentation in Japan Geoscience Union (JpGU) Chiba-city, Japan, May 20–24 2018

    Google Scholar 

  • Gupta PK, Yadav B, Yadav BK (2019) Assessment of LNAPL in subsurface under fluctuating groundwater table using 2D sand tank experiments. ASCE J Environ Eng. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001560

  • Gupta PK, Yadav BK (2019) Subsurface processes controlling reuse potential of treated wastewater under climate change conditions. In: Water conservation, recycling and reuse: issues and challenges. Springer, Singapore, pp 147–170

    Google Scholar 

  • Gupta PK, Yadav BK (2017) Bioremediation of non-aqueous phase liquids (NAPLs) polluted soil-water resources Chapter 8. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches. CRC Press, Boca Raton

    Google Scholar 

  • Gupta PK, Shashi R, Yadav BK, (2013) BTEX biodegradation in soil-water system having different substrate concentrations. Int J Eng 2(12):1765–1772

    Google Scholar 

  • Hammed SK, Prajapati S, Simsek H, Simsek S (2016) Growth regime and environmental remediation of microalgae. Algae 31:189–204. https://doi.org/10.4490/algae.2016.31.8.28

    Article  CAS  Google Scholar 

  • Hentati O, Lachhab R, Ayadi M, Ksibi M (2013) Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environ Monit Assess 185:2989–2998

    CAS  Google Scholar 

  • Hlavová M, Turóczy Z, Bišová K (2015) Improving microalgae for biotechnology-from genetics to synthetic biology. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2015.01.009

  • Hong Y-W, Yuan D-X, Lin Q-M, Yang T-L (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull 56:1400–1405

    CAS  Google Scholar 

  • Hopkinson BM, Roe K, Barbeau KA (2008) Heme uptake by Microscilla marina and evidence for heme uptake systems in the genomes of diverse marine bacteria. Appl Environ Microbiol 74:6263–6270

    CAS  Google Scholar 

  • Ibrahim MBM, Gamila HA (2004) Algal bioassay for evaluating the role of algae in bioremediation of crude oil: II. Freshwater phytoplankton assemblages. Bull Environ Contam Toxicol 73:971–978

    CAS  Google Scholar 

  • Jacobson SN, Alexander M (1981) Enhancement of the microbial dehalogenation of a model chlorinated compound. Appl Environ Microbiol 42:1062–1066

    CAS  Google Scholar 

  • Jacques NR, McMartin DW (2009) Evaluation of algal phytoremediation of light extractable petroleum hydrocarbons in subarctic climates. Remediat J 20:119–132

    Google Scholar 

  • Jasmin I, Mallikarjuna P (2011) Satellite-based remote sensing and geographic information systems and their application in the assessment of groundwater potential, with particular reference to India. Hydrogeol J 19(4):729–740

    Google Scholar 

  • Jasti S, Sieracki ME, Poulton NJ, Giewat MW, Rooney-Varga JN (2005) Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. Appl Environ Microbiol 71:3483–3494

    CAS  Google Scholar 

  • Karamalidis AK, Evangelou AC, Karabika E, Koukkou AI, Drainas C, Voudrias EA (2010) Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet. Bioresour Technol 101(16):6545–6552. https://doi.org/10.1016/j.biortech.2010.03.055

    Article  CAS  Google Scholar 

  • Kesaano M, Sims R (2014) Algal biofilm based technology for wastewater treatment. Algal Res 5:231–240

    Google Scholar 

  • Kirso U, Irha N (1998) Role of algae in fate of carcinogenic polycyclic aromatic hydrocarbons in the aquatic environment. Environ Toxicol Environ Saf 41:83–89

    CAS  Google Scholar 

  • Kneip C, Lockhart P, Voß CMaier U-G (2007) Nitrogen fixation in eukaryotes: new models for symbiosis. BMC Evol Biol 7:55

    Google Scholar 

  • Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4:957–970

    CAS  Google Scholar 

  • Kumar H, Kumari JP (2015) Heavy metal lead influative toxicity and its assessment in phytoremediating plants: a review. Water Air Soil Pollut 226:324

    Google Scholar 

  • Kumari B, Gupta PK, Kumar D (2019) In-situ observation and Nitrate-N load assessment in Madhubani District, Bihar, India. J Geol Soc India (Springer) 93(1):113–118. https://doi.org/10.1007/s12594-019-1130-z

    Article  CAS  Google Scholar 

  • Liebe B, Fock HP (1992) Growth and adaption of the green alga Chlamydomonas reinhardtii on diesel exhaust particle extracts. J Gen Microbiol 138:973–978

    CAS  Google Scholar 

  • Luther M (1990) Degradation of di¡erent substituted aromatic compounds as nutrient sources by the green alga Scenedesmus obliquus. Dechema Biotechnol Conf 4:613–615

    CAS  Google Scholar 

  • Luther M, Soeder CJ (1987) Some naphthalene sulphonic acids as sulphur sources for the green microalga, Scenedesmus obliquus. Chemosphere 16:1565–1578

    CAS  Google Scholar 

  • Margesin R (2000) Potential of cold-adapted microorganisms for bioremediation of oil-polluted alpine soils. Int Biodeterior Biodegradation 46:3–10

    CAS  Google Scholar 

  • Margesin R, Walder G, Schinner F (2000) The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnol 20:313–333

    CAS  Google Scholar 

  • Mata T, Martins A, Caetanao N (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    CAS  Google Scholar 

  • Matamoros V, García J, Bayona JM (2005) Behavior of selected pharmaceuticals in subsurface flow constructed wetlands: a pilot-scale study. Environ Sci Technol 39:5449–5454

    CAS  Google Scholar 

  • Mouget JL, Dakhama A, Lavoie MC, Delanoue J (1995) Algal growth enhancement by bacteria – is consumption of photosynthetic oxygen involved. FEMS Microbiol Ecol 18:35–43

    CAS  Google Scholar 

  • Muñoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61:261–267

    Google Scholar 

  • Mustapha IH, Gupta PK, Yadav BK, van Bruggen JJA, Lens PNL (2018) Performance evaluation of duplex constructed wetlands for the treatment of diesel contaminated wastewater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.04.036

  • Naas MH, Acio JA, El Telib AE (2014) Aerobic biodegradation of BTEX: progresses and prospects. J Environ Chem Eng 2(2):1104–1122. https://doi.org/10.1016/j.jece.2014.04.009

    Article  CAS  Google Scholar 

  • Najafi N, Hosseini R, Ahmadi A (2011) Impact of gamma rays on the Phaffia rhodozyma genome revealed by RAPD-PCR. Iran J Microbiol 3:216

    CAS  Google Scholar 

  • Narayanan M, Tracy JC, Davis LC, Erickson LE (1998) Modeling the fate of toluene in a chamber with alfalfa plants 1. Theory and modelling concepts. J Hazard Subst Res 1:1–30

    Google Scholar 

  • Ojo AO, Oyelami CA, Adereti AO (2014) Hydro-geochemical and geophysical study of groundwater in the suburb of Osogbo, South Western Nigeria. J Earth Sci Clim Change 5:205. https://doi.org/10.4172/2157-7617.1000205

    Article  CAS  Google Scholar 

  • Olson MR, Sale TC (2015) Implications of soil mixing for NAPL source zone remediation: column studies and modeling of field-scale systems. J Contam Hydrol 177-178:206–219. https://doi.org/10.1016/j.jconhyd.2015.04.008

    Article  CAS  Google Scholar 

  • Oostrom M, Dane JH, Wietsma TW (2007) A review of multidimensional, multifluid, intermediate-scale experiments: flow behavior, saturation imaging, and tracer detection and quantification. Vadose Zone J 6(3):610–637

    CAS  Google Scholar 

  • Pittman J, Dean A, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    CAS  Google Scholar 

  • Ranjan S, Gupta PK, Yadav BK (2018) Chapter 6: Application of nano-materials in subsurface remediation techniques – challenges and future prospects. In: Recent advances in environmental management, vol 1. CRC Press Taylor & Francis Group. isbn:9780815383147

    Google Scholar 

  • Richmond A (2004) Principles for attaining maximal microalgal productivity in photobioreactors: an overview. In: Asian Pacific phycology in the 21st century: prospects and challenges. Springer, Dordrecht, pp 33–37

    Google Scholar 

  • Rodell M, Famiglietti JS (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the high plains aquifer, Central US. J Hydrol 263(1-4):245–256

    Google Scholar 

  • Roeselers G, van Loosdrecht MCM, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20:227–235

    CAS  Google Scholar 

  • Sapp M, Schwaderer AS, Wiltshire KH, Hoppe HG, Gerdts G, Wichels A (2007) Species-specific bacterial communities in the phycosphere of microalgae? Microb Ecol 53:683–699

    Google Scholar 

  • Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136(1):187–195. https://doi.org/10.1016/j.envpol.2004.09.025

    Article  CAS  Google Scholar 

  • Schmidt S, Fortnagel P, Wittich RM (1993) Biodegradation and transformation of 4,4P- and 2,4-dihalodiphenyl ethers by Sphingomonas sp. strain SS33. Appl Environ Microbiol 59:3931–3933

    CAS  Google Scholar 

  • Semple KT, Cain RB (1996) Biodegradation of phenolics by Ochromonas danica. Appl Environ Microbiol 62:1265–1273

    CAS  Google Scholar 

  • Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300

    CAS  Google Scholar 

  • Shehzadi M, Afzal M, Khan MU, Islam E, Mobin A, Anwar S, Khan QM (2014) Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res 58:152–159. https://doi.org/10.1016/j.watres.2014.03.064

    Article  CAS  Google Scholar 

  • Shimp JF, Tracy JC, Davis LC, Lee E, Huang W, Erickson LE, Schnoor JL (1993) Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. Crit Rev Environ Sci Technol 23(1):41–77

    CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18(5):647–658. https://doi.org/10.1016/S0925-8574(02)00026-5

    Article  Google Scholar 

  • Suzuki T, Yamaya S (2005) Removal of hydrocarbons in a rotating biological contactor with biodrum. Process Biochem 40:3429–3433

    CAS  Google Scholar 

  • Takacova A, Smolinská M, Semerád M, Matúš P (2015) Degradation of BTEX by microalgae Parachlorella kessleri. Pet Coal 57(2):101–107

    CAS  Google Scholar 

  • Tang X, He LY, Tao XQ, Dang Z, Guo CL, Lu GN, Yi XY (2010) Construction of an artificial microalgal bacterial consortium that efficiently degrades crude oil. J Hazard Mater 181:1158–1162

    CAS  Google Scholar 

  • Tormoehlen LM, Tekulve KJ, Agas KA (2014) Hydrocarbon toxicity: a review. Clin Toxicol 52:479–489

    CAS  Google Scholar 

  • Tsao C, Song H, Bartha R (1998) Metabolism of benzene, toluene, and xylene hydrocarbons in soil. Appl Environ Microbiol 64(12):4924

    CAS  Google Scholar 

  • Ueno R, Wada S, Urano N (2006) Synergetic effects of cell immobilization in polyurethane foam and use of thermotolerant strain on degradation of mixed hydrocarbon substrate by Prototheca zopfii. Fish Sci 72:1027–1033

    CAS  Google Scholar 

  • Ueno R, Wada S, Urano N (2007) Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam. Can J Microbiol 54:66–70

    Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    CAS  Google Scholar 

  • USEPA (2006) In situ and ex situ biodegradation technologies for remediation of contaminated sites, EPA/625/R-06/015

    Google Scholar 

  • Van Stempvoort D, Biggar K (2008) Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: a review. Cold Reg Sci Technol 53:16–41. https://doi.org/10.1016/j.coldregions.2007.06.009

    Article  Google Scholar 

  • Voudrias EA, Yeh MF (1994) Dissolution of a toluene pool under constant and variable hydraulic gradients with implications for aquifer remediation. Groundwater 32(2):305–311

    CAS  Google Scholar 

  • Walker JD, Colwell RR, Petrakis L (1975a) Degradation of petroleum by an alga, Prototheca zop¢i. Appl Microbiol 30:79–81

    CAS  Google Scholar 

  • Walker JD, Colwell RR, Vaituzis Z, Meyer SA (1975b) Petroleum degrading achlorophyllous alga Prototheca zopfii. Nature 254:423–424

    CAS  Google Scholar 

  • Wang D, Liu Y, Lin Z, Yang Z, Hao C (2008) Isolation and identification of surfactin producing Bacillus subtilis strain and its effect of surfactin on crude oil. Wei Sheng Wu Xue Bao 48(3):304–311

    CAS  Google Scholar 

  • Wang S-K, Stiles AR, Guo C, Liu CZ (2014) Microalgae cultivation in photobioreactors: an overview of light characteristics. Eng Life Sci 14:550–559

    CAS  Google Scholar 

  • Warshawsky D, Radike M, Jayasimhulu K, Cody T (1988) Metabolism of benzo(a)pyrene by a dioxygenase system of the fresh green alga Selenastrum capricornutum. Biochem Biophys Res Commun 152:540–544

    CAS  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1994) The role of interactions, sessile growth, and nutrient amendments on the degradative efficiency of a microbial consortium. Can J Microbiol 40:331–340

    CAS  Google Scholar 

  • Yadav BK, Hassanizadeh SM (2011) An overview of biodegradation of LNAPLs in coastal (semi)-arid environment. Water Air Soil Pollut 220:225–239

    CAS  Google Scholar 

  • Yadav BK, Ansari FA, Basu S, Mathur A (2013) Remediation of LNAPL contaminated groundwater using plant-assisted biostimulation and bioaugmentation methods. Water Air Soil Pollut 225(1):1793. https://doi.org/10.1007/s11270-013-1793-9

    Article  CAS  Google Scholar 

  • Zhou AX, Zhang YL, Dong TZ, Lin XY, Su XS (2015) Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater. Environ Sci Pollut Res 22(13):10094–10106

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, P.K., Ranjan, S., Gupta, S.K. (2019). Phycoremediation of Petroleum Hydrocarbon-Polluted Sites: Application, Challenges, and Future Prospects. In: Gupta, S.K., Bux, F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13913-1_8

Download citation

Publish with us

Policies and ethics