Skip to main content

Potential and Application of Diatoms for Industry-Specific Wastewater Treatment

  • Chapter
  • First Online:

Abstract

Increased production of industrial wastewaters is an inevitable part of the present developing world, but majority of these waters are highly toxic to not only humans but to other biota, if they are released as such into ponds, streams, rivers, and oceans. Although it is obligatory to remove certain nutrient and other chemicals from industrial effluents before their release, this practice is overlooked by many industries especially in developing countries. This practice can be attributed to nonavailability of low-cost eco-friendly alternatives to the present chemical-based technologies. The diatom algae possess enormous potential in removal of pollutants like organic chemical toxins and heavy metal pollutants and rather than N and P from predominantly industrial wastewaters. The industrial wastewater is characterized by the low concentration of nitrogen and phosphorous, poor light penetration in colored effluents, and elevated concentrations of metals, which are not favorable for algal growth rates. So it is paramount to select right kind of algae to treat industrial wastewaters. Diatoms are unique class of algae with tremendous diversity and are significantly different in cellular and metabolic potential from other algae. Diatoms are responsible for about 20% of the total photosynthetic CO2 fixation. Diatom algae are pioneers in controlling and biomonitoring of organic pollutants, heavy metals, hydrocarbons, PCBs, pesticides, etc. in aquatic ecosystems. Heavy metal resistance was shown in several diatoms like Cyclotella cryptica, Skeletonema costatum, Cylindrotheca fusiformis, Phaeodactylum tricornutum, and Thalassiosira pseudonana. Although diatoms are extensively studied for their role as bioindicators of water pollution, their application in phycoremediation of polluted water bodies has just started. This chapter reviews the current research on the potential advantages and lacuna pertinent to the utilization of diatoms for sustainable approach of industrial wastewaters remediation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adey WH, Hackney L (1989) The composition and production of tropical marine algal turf in laboratory and field experiments. In: Adey W (ed) The biology, ecology and mariculture of Mithrax spinosissimus utilizing cultured algal turfs. Mariculture Institute, Washington

    Google Scholar 

  • Amano Y, Takahashi K, Machida M (2011) Competition between the cyanobacterium Microcystis aeruginosa and the diatom Cyclotella sp. under nitrogen-limited condition caused by dilution in eutrophic lake. J Appl Phycol 24(4):965–971

    Google Scholar 

  • Ambler JW, Frost BW (1974) The feeding behavior of a predatory planktonic copepod, Torlanus discaudatus. Limnol Oceanogr 19(3):446–451

    Google Scholar 

  • Archer D (2006) Biological fluxes in the ocean. Oceans Marine Geochem 6:275

    Google Scholar 

  • Bailleul B, Berne N, Murik O, Petroutsos D, Prihoda J, Tanaka A, Villanova V, Bligny R, Flori S, Falconet D (2015) Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524(7565):366

    CAS  Google Scholar 

  • Basu AK (1975) Characteristics of distillery wastewater. J Water Pollut Control Fed 47:2184–2190

    CAS  Google Scholar 

  • Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations response surface methodology analysis. Energy Convers Manag 50(2):262–267

    CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae — A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energy Rev 14(2):557–577

    CAS  Google Scholar 

  • Brzezinski MA, Pride CJ, Franck VM, Sigman DM, Sarmiento JL, Matsumoto K, Gruber N, Rau GH, Coale KH (2002) A switch from Si (OH) 4 to NO3− depletion in the glacial Southern Ocean. Geophys Res Lett 29(12)

    Google Scholar 

  • Buesseler KO (1998) The decoupling of production and particulate export in the surface ocean. Glob Biogeochem Cycles 12(2):297–310

    CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    CAS  Google Scholar 

  • Craggs RJ, Tanner CC, Sukias JP, Davies-Colley RJ (2003) Dairy farm wastewater treatment by an advanced pond system. Water Sci Technol 48:291–297

    CAS  Google Scholar 

  • de Godos I, Vargas VA, Blanco S, González MC, Soto R, García-Encina PA, Becares E, Muoz R (2010) A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour Technol 101(14):5150–5158

    Google Scholar 

  • Dosdat A, Servais F, Metailler R, Huelvan C, Desbruyhres E (1996) Comparison of nitrogenous losses in five teleost fish species. Aquaculture 141:107–127

    Google Scholar 

  • Dugdale RC, Wilkerson FP (1988) Nutrient sources and primary production in the Eastern Mediterranean. Oceanol Acta 9:179–184. Special Issue

    Google Scholar 

  • Egge J, Aksnes D (1992) Silicate as regulating nutrient in phytoplankton competition. Mar Ecol Prog Ser 83(2):281–289

    CAS  Google Scholar 

  • Elbaum R, Melamed-Bessudo C, Tuross N, Levy AA, Weiner S (2009) New methods to isolate organic materials from silicified phytoliths reveal fragmented glycoproteins but no DNA. Quat Int 193(1–2):11–19

    Google Scholar 

  • Falciatore A, Bowler C (2002) Revealing the molecular secrets of marine diatoms. Annu Rev Plant Biol 53(1):109–130

    CAS  Google Scholar 

  • Falkowski P, Raven J (2007) Photosynthesis and primary production in nature. In: Aquatic photosynthesis, pp 319–363 Princeton University Press ISBN:9780691115511

    Google Scholar 

  • Fazal T, Mushtaq A, Rehman F, Ullah Khan A, Rashid N, Farooq W, Rehman MSU, Xu J (2018) Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renew Sust Energ Rev 82:3107–3126

    CAS  Google Scholar 

  • Furnas MJ (1990) In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J Plankton Res 12(6):1117–1151

    Google Scholar 

  • Grobbelaar JU (2009) Factors governing algal growth in photobioreactors: the open versus closed debate. J Appl Phycol 21(5):489

    CAS  Google Scholar 

  • Halsey KH, Jones BM (2015) Phytoplankton strategies for photosynthetic energy allocation. Annu Rev Mar Sci 7:265–297

    Google Scholar 

  • Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421(6925):841

    CAS  Google Scholar 

  • Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour Industry 10:1–14

    Google Scholar 

  • Hong Y-W, Yuan D-X, Lin Q-M, Yang T-L (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull 56(8):1400–1405

    CAS  Google Scholar 

  • Hsieh C-H, Wu W-T (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100(17):3921–3926

    CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    CAS  Google Scholar 

  • Hulburt EM (1990) Description of phytoplankton and nutrient in spring in the western North Atlantic Ocean. J Plankton Res 12(1):1–28

    Google Scholar 

  • Huntley M (1995) Microalgae as a source of feeds in commercial aquaculture. Sustainable Aquaculture ’95. Pacon International, Hawaii: 193–204

    Google Scholar 

  • Kilham SS, Theriot EC, Fritz SC (1996) Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnol Oceanogr 41(5):1052–1062

    CAS  Google Scholar 

  • Kroth P (2007) Molecular biology and the biotechnological potential of diatoms. In: Transgenic microalgae as green cell factories. Springer, pp 23–33 New York, NY

    Google Scholar 

  • Kuppusamy P et al (2017) Potential pharmaceutical and biomedical applications of Diatoms microalgae - An overview. Indian J Geo Mar Sci 46(04):663–667

    Google Scholar 

  • Lefebvre S, Hussenot J, Brossard N (1996) Water treatment of land-based fish farm effluents by outdoor culture of marine diatoms. J Appl Phycol 8:193–200

    Google Scholar 

  • Li X-l, Marella TK, Tao L, Peng L, Song C-f, Dai L-l, Tiwari A, Li G (2017a) A novel growth method for diatom algae in aquaculture wastewater for natural food development and nutrient removal. Water Sci Technol 75:2777. https://doi.org/10.2166/wst.2017.156

    Article  CAS  Google Scholar 

  • Li X-l, Thomas KM, Tao L, Li R, Tiwari A, Li G (2017b) An Orthogonal test design for optimization of growth conditions in three fresh water diatom species. Phycol Res 65:177. https://doi.org/10.1111/pre.12174

    Article  CAS  Google Scholar 

  • Libessart N, Maddelein M-L, Koornhuyse N, Decq A, Delrue B, Mouille G, D’Hulst C, Ball S (1995) Storage, photosynthesis, and growth: the conditional nature of mutations affecting starch synthesis and structure in Chlamydomonas. Plant Cell 7 (8):1117–1127

    Google Scholar 

  • Litchman E, Klausmeier CA (2001) Competition of phytoplankton under fluctuating light. Am Nat 157(2):170–187

    CAS  Google Scholar 

  • Litchman E, Klausmeier C, Miller J, Schofield O, Falkowski P (2006) Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Biogeosci Discuss 3(3):607–663

    Google Scholar 

  • Lynn SG, Price DJ, Birge WJ, Kilham SS (2007) Effect of nutrient availability on the uptake of PCB congener 2, 2, 6, 6-tetrachlorobiphenyl by a diatom (Stephanodiscus minutulus) and transfer to a zooplankton (Daphnia pulicaria). Aquat Toxicol 83(1):24–32

    CAS  Google Scholar 

  • Mata TM, Melo AC, Simões M, Caetano NS (2012) Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol 107:151–158

    CAS  Google Scholar 

  • McGinn PJ et al (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Phtosynth Res 109(1–3):231–247

    CAS  Google Scholar 

  • Milligan AJ, Morel FM (2002) A proton buffering role for silica in diatoms. Science 297(5588):1848–1850

    CAS  Google Scholar 

  • Mulbry W, Wilkie AC (2001) Growth of benthic freshwater algae on dairy manures. J Appl Phycol 13:301–306

    Google Scholar 

  • Mulbry W, Westhead EK, Pizarro C, Sikora L (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 96:451–458

    CAS  Google Scholar 

  • Orefice I, Chandrasekaran R, Smerilli A, Corato F, Caruso T, Casillo A, Corsaro MM, Dal Piaz F, Ruban AV, Brunet C (2016) Light-induced changes in the photosynthetic physiology and biochemistry in the diatom Skeletonema marinoi. Algal Res 17:1–13

    Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. In: Adv Appl Microbiol, vol 2. Elsevier, pp 223–262

    Google Scholar 

  • Racki G, Cordey F (2000) Radiolarian palaeoecology and radiolarites: is the present the key to the past? Earth Sci Rev 52(1–3):83–120

    CAS  Google Scholar 

  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58(2):179–207

    CAS  Google Scholar 

  • Rico-Villa B, Woerther P, Minganta C, Lepiver D, Pouvreau S, Hamon M, Robert R (2008) A flow-through rearing system for ecophysiological studies of Pacific oyster Crassostrea gigas larvae. Aquaculture 282:54–60

    Google Scholar 

  • Ryther JH (1969) Photosynthesis and fish production in the sea. Science 166(3901):72–76

    CAS  Google Scholar 

  • Sakshaug E, Andresen K, Kiefer DA (1989) A steady state description of growth and light absorption in the marine planktonic diatom Skeletonema costatum. Limnol Oceanogr 34(1):198–205

    Google Scholar 

  • Sen B, Alp MT, Sonmez F, Kocer MAT, Canpolat O (2013) Chapter 14: Relationship of algae to water pollution and waste water treatment. In: Elshorbagy W, Chowdhury RK (eds) Water treatment. Intech Open, pp 335–353

    Google Scholar 

  • Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150(1):25–32

    CAS  Google Scholar 

  • Smetacek V, von Bodungen B, Knoppers B, Peinert R, Pollehne F, Stegmann P, Zeitzschel B (1984) Seasonal stages characterizing the annual cycle of an inshore pelagic system. Rapports et Proces-Verbaux des Reunions Conseil International pour l’Exploration de la Mer 183:126–135

    Google Scholar 

  • Street-Perrott FA, Barker PA (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Process Landf 33(9):1436–1457

    CAS  Google Scholar 

  • Suh IS, Lee C-G (2003) Photobioreactor engineering: design and performance. Biotechnol Bioprocess Eng 8(6):313

    CAS  Google Scholar 

  • Tan XB, Lam MK, Uemura Y, Lim JW, Wong CY, Lee KT (2018) Cultivation of microalgae for biodiesel production: A review on upstream and downstream processing. Chin J Chem Eng 26(1):17–30

    CAS  Google Scholar 

  • Thomas WH, Dodson AN, Reid FM (1978) Diatom productivity compared to other algae in natural marine phytoplankton assemblages. J Phycol 14(3):250–253

    Google Scholar 

  • Thomas KM, Tiwari A, Bhaskar MV (2015) A novel solution to grow diatom algae in large natural water bodies and its impact on CO capture and nutrient removal. J Algal Biomass Utln 6(2):22–27

    Google Scholar 

  • Thomas KM, Bhaskar MV, Tiwari A (2016) Phycoremediation of eutrophic lakes using diatom algae. In: Lake sciences and climate change. InTechOpen

    Google Scholar 

  • Thomas KM, Reddy Parine N, Tiwari A (2018) Potential of diatom consortium developed by Nutrient enrichment for Biodiesel production and simultaneous nutrient removal from waste water. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2017.05.011

  • Tiwari A (2016) Algal application in horticulture: novel approaches to wards sustainable agriculture. Ann Hortic 9(2):117–120. https://doi.org/10.5958/0976-4623.2016.00048.7

    Article  Google Scholar 

  • Tiwari A, Pandey A (2014) Toxic cyanobacterial blooms and molecular detection of hepatotoxin- microcystin. J Algal Biomass Util 5(2):33–42

    Google Scholar 

  • Tiwari A, Thomas K (2016) Value added products from microalgae. In: Mendez-Vilas A (ed) Microbes in the spotlight: recent progress in the understanding of beneficial and harmful microorganisms. Brown Walker Press. ISBN 9781627346122

    Google Scholar 

  • Tiwari A, Thomas K (2018) In: Nageswara-Rao M (ed) Chapter 12: Biofuels from microalgae, Advances in biofuels and bioenergy, IntechOpen, pp 239–249

    Google Scholar 

  • Tozzi S, Schofield O, Falkowski P (2004) Historical climate change and ocean turbulence as selective agents for two key phytoplankton functional groups. Mar Ecol Prog Ser 274:123–132

    Google Scholar 

  • Traguer P, Pondaven P (2000) Global change: silica control of carbon dioxide. Nature 406(6794):358

    Google Scholar 

  • Trivedy RK, Nakate SS (2000) Treatment of diluted distillery waste by constructed wetlands. Ind. J Environ Prot 20:749–753

    CAS  Google Scholar 

  • Valderrama LT, Del Campo CM, Rodriguez CM, Bashan LE, Bashan Y (2002) Treatment of recalcitrant wastewater from ethanol and citric acid using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula. Water Res 36:4185–4192

    CAS  Google Scholar 

  • Valiente Moro C, Bricheux G, Portelli C, Bohatier J (2012) Comparative effects of the herbicides chlortoluron and mesotrione on freshwater microalgae. Environ Toxicol Chem 31(4):778–786

    Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    CAS  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101(14):5494–5500

    CAS  Google Scholar 

  • Yamamoto T, Goto I, Kawaguchi O, Minagawa K, Ariyoshi E, Matsuda O (2008) Phytoremediation of shallow organically enriched marine sediments using benthic microalgae. Mar Pollut Bull 57(1–5):108–115

    CAS  Google Scholar 

Download references

Acknowledgment

The research was funded by Department of Biotechnology, Ministry of Science and Technology, BT/PR15650/AAQ/3/815/2016.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, A., Marella, T.K. (2019). Potential and Application of Diatoms for Industry-Specific Wastewater Treatment. In: Gupta, S.K., Bux, F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13913-1_15

Download citation

Publish with us

Policies and ethics