Skip to main content

Conducting Polymer Based Ionic Polymer Metal Composite Actuators

  • Chapter
  • First Online:
Ionic Polymer Metal Composites for Sensors and Actuators

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 620 Accesses

Abstract

Organic materials that mimic the mammalian skeleton muscles are of great interest in artificial actuators for applications such as robot legs, surgical instruments and Braille displays. These ionic polymer metal composite (IPMC) actuators are compact, lightweight, silent, strong and reliable. In this regard, conjugated or conducting polymeric materials are attractive as these offer the desired properties and their actuator operations are similar to biological muscles. This chapter focuses on four types of conjugated polymers: polyaniline, polypyrrole, polythiophene and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate as active materials in IMPC actuators. First, their chemical or electrochemical synthesis is described. Then, their actuators characteristics and performances are discussed and compared. In sum, this chapter aims to give the reader a good overview of the pros and cons in respect of each type of materials as well as their uses in actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alici, G., Spinks, G., Huynh, N.N., Sarmadi, L., Minato, R.: Establishment of a biomimetic device based on tri-layer polymer actuators–propulsion fin. Bioinspir. Biomim. 2, 18–30 (2007)

    Article  Google Scholar 

  2. Chen, D., Pei, Q.: Electronic muscles and skins: a review of soft sensors and actuators. Chem. Rev. 117, 11239–11268 (2017)

    Article  CAS  Google Scholar 

  3. Bar-Cohen, Y.: Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, 2nd edn. SPIE Publications (2004)

    Google Scholar 

  4. Bhandari, B., Lee, G.-Y., Ahn, S.-H.: A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. Int. J. Precis. Eng. Manuf. 13, 141–163 (2012)

    Article  Google Scholar 

  5. Bar-Cohen, Y., Zhang, Q.: Electroactive polymer actuators and sensors. MRS Bull. 33, 173–177 (2008)

    Google Scholar 

  6. Eisenberg, A., King, M.: Ion-containing Polymers: Physical Properties and Structures. Academic Press (1977)

    Google Scholar 

  7. Kim, O., Kim, S.J., Park, M.J.: Low-voltage-driven soft actuators. Chem. Commun. 54, 4895–4904 (2018)

    Article  CAS  Google Scholar 

  8. Kim, K.J., Shahinpoor, M.: Ionic polymer–metal composites: II Manufacturing techniques. Smart Mater. Struct. 12, 65–79 (2003)

    Article  CAS  Google Scholar 

  9. Shahinpoor, M., Kim, K.J.: Novel ionic polymer–metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles. Sens. Actuator A-Phys. 96, 125–132 (2002)

    Google Scholar 

  10. Kim, B.K., Kim, B.M., Ryu, J.W., Oh, I.-H., Lee, S.-K., Cha, S.-E., Pak, J.-H.: Analysis of mechanical characteristics of the ionic polymer metal composite (IPMC) actuator using cast ion-exchange film. Proc. SPIE 5051, 486–495 (2003)

    Google Scholar 

  11. Lee, S.J., Han, M.J., Kim, S.J., Jho, J.Y., Lee, H.Y., Kim, Y.H.: A new fabrication method for IPMC actuators and application to artificial fingers. Smart Mater. Struct. 15, 1217–1224 (2006)

    Article  Google Scholar 

  12. Takeneka, H., Torikai, E., Kawami, Y., Wakabayashi, N.: Solid polymer electrolyte water electrolysis. Int. J. Hydrog. Energy 7, 397–403 (1982)

    Article  Google Scholar 

  13. Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites: III Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater. Struct. 13, 1362–1388 (2004)

    Article  CAS  Google Scholar 

  14. Otero,T.F., Angulo, E., Rodriguez, J., Santamaria, C.: Electrochemomechanical properties from a bilayer: polypyrrole/non-conducting and flexible material—artificial muscle. J. Electroanal. Chem. 341, 369–375 (1992)

    Google Scholar 

  15. Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, A.J.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 578–580 (1977)

    Google Scholar 

  16. Chiang, C.K., Fincher, C.R., Park, Y.W., Heeger, A.J., Shirakawa, H., Louis, E.J., Gau, S.C., MacDiarmid, A.G.: Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098 (1977)

    Article  CAS  Google Scholar 

  17. van Mullekom, H.A.M., Vekemans, J.A.J.M., Havinga, E.E., Meijer, E.W.: Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Mater. Sci. Eng. R Rep. R32, 1 (2001)

    Article  Google Scholar 

  18. Moliton, A., Hiorns, R.C.: Review of electronic and optical properties of semiconducting π-conjugated polymers: applications in optoelectronics. Polym. Int. 53, 1397–1412 (2004)

    Article  CAS  Google Scholar 

  19. Patil, A.O., Heeger, A.J., Wudl, F.: Optical properties of conducting polymers. Chem. Rev. 183–200 (1988)

    Google Scholar 

  20. Morita, S., Zakhidov, A.A., Yoshino, K.: Doping effect of buckminsterfullerene in conducting polymer: change of absorption spectrum and quenching of luminescene. Solid State Commun. 82, 29–252 (1992)

    Article  Google Scholar 

  21. Lüssem, B., Keum, C.-M., Kasemann, D., Naab, B., Bao, Z., Leo, K.: Doped organic transistors. Chem. Rev. 116, 13714–13751 (2016)

    Article  Google Scholar 

  22. Kaneto, K., Kaneko, M., Min, Y., MacDiarmid, A.G.: “Artificial muscle”: electromechanical actuators using polyaniline films. Synth. Met. 71, 2211–2212 (1995)

    Article  CAS  Google Scholar 

  23. Mondal, S.K., Prasad, K.R., Munichandraiah, N.: Analysis of electrochemical impedance of polyaniline films prepared by galvanostatic, potentiostatic and potentiodynamic methods. Synth. Met. 148, 275–286 (2005)

    Google Scholar 

  24. Boeva, Z.A., Sergeyev, V.G.: Polyaniline: synthesis, properties, and application. Polym. Sci. Ser. C  56, 144–153 (2014)

    Google Scholar 

  25. Li, C., Bai, H., Shi, G.: Conducting polymer nanomaterials: electrosynthesis and applications. Chem. Soc. Rev. 38, 2397–2409 (2009)

    Article  CAS  Google Scholar 

  26. Heinze, J., Frontana-Uribe, B.A., Ludwigs, S.: Electrochemistry of conducting polymers—persistent models and new concepts. Chem. Rev. 110, 4724–4771 (2010)

    Google Scholar 

  27. Stejskal, J., Gilbert, R.G.: Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure Appl. Chem. 74, 857–867 (2002)

    Google Scholar 

  28. Kim, J., Yun, S.-R., Deshpande, S.D.: Synthesis, characterization and actuation behavior of polyaniline-coated electroactive paper actuators. Polym. Int. 56, 1530–1536 (2007)

    Google Scholar 

  29. Sansinena, J.-M., Gao, J., Wang, H.-L.: High-performance, monolithic polyaniline electrochemical actuators. Adv. Funct. Mater. 13, 703–709 (2003)

    Article  CAS  Google Scholar 

  30. Wang, H.L., Gao, J.B., Sansinena, J.M., McCarthy, P.: Fabrication and characterization of polyaniline monolithic actuators based on a novel configuration: integrally skinned asymmetric membrane. Chem. Mater. 14, 2546–2552 (2002)

    Article  CAS  Google Scholar 

  31. Liu, Q., Liu, L., Xie, K., Meng, Y., Wu, H., Wang, G., Dai, Z., Wei, Z., Zhang, Z.: Synergistic effect of a r-GO/PANI nanocomposite electrode based air working ionic actuator with a large actuation stroke and long-term durability. J. Mater. Chem. A 3, 8380–8388 (2015)

    Article  CAS  Google Scholar 

  32. Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., Rossi, D.D., Rinzler, A.G., Jashinski, O., Roth, S., Kertesz, M.: Carbon nanotubes actuators. Science 284, 1340–1344 (1999)

    Article  CAS  Google Scholar 

  33. Fukushima, T., Asaka, K., Kosaka, A., Aida, T.: Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Ed. 44, 2410–2413 (2005)

    Article  CAS  Google Scholar 

  34. Xu, J., Wang, K., Zu, S., Han, B., Wei, Z.: Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4, 5019–5026 (2010)

    Article  CAS  Google Scholar 

  35. Vernitskaya, T.V., Efimov, O.N.: Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ. Chem. Rev. 66, 443–457 (1997)

    Google Scholar 

  36. Alici, G., Punning, A., Shea, H.R.: Enhancement of actuation ability of ionic-type conducting polymer actuators using metal ion implantation. Sens. Actuator B Chem. 157, 72–84 (2011)

    Article  CAS  Google Scholar 

  37. Ding, J., Zhou, D., Spinks, G., Wallace, G., Forsyth, S., Forsyth, M., MacFarlane, D.: Use of ionic liquids as electrolytes in electromechanical actuator systems based on inherently conducting polymers. Chem. Mater. 15, 2392–2398 (2003)

    Article  CAS  Google Scholar 

  38. Scharifker, B.R., Garcia-Pastoriza, E., Marino, W.: The growth of polypyrrole films on electrodes. J. Electroanal. Chem. 300, 85–98 (1991)

    Article  CAS  Google Scholar 

  39. Zemel, P.S.A., Zinger, B.: Characterization of polypyrrole based heterojunction. Synth. Met. 41, 443 (1991)

    Article  Google Scholar 

  40. Pei, Q., Inganas, O.: Conjugated polymers and the bending cantilever method: electrical muscles and smart devices. Adv. Mater. 4, 277–278 (1992)

    Article  CAS  Google Scholar 

  41. Chiarelli, P., Della Santa, A., DeRossi, D., Mazzoldi, A.: Actuation propeties of electrochemically driven polypyrrole free-standing films. In: Proceedings of 2nd International Conference on Intelligent Materials, p. 352. Technomic Pub. Co. (1994)

    Google Scholar 

  42. Gandhi, M.R., Murray, P., Spinks, G.M., Wallace, G.G.: Mechanism of electromechanical actuation in polypyrrole. Synth. Met. 73, 247–256 (1995)

    Article  CAS  Google Scholar 

  43. Temmer, R., Must, I., Kaasik, F., Aabloo, A., Tamm, T.: Combined chemical and electrochemical synthesis methods for metal-free polypyrrole actuators Sens. Actuator B-Chem. 166–167, 411–418 (2012)

    Article  Google Scholar 

  44. Madden, J.D., Cush, R.A., Kanigan, T.S., Hunter, I.W.: Fast contracting polypyrrole actuators. Synth. Met. 113, 185–192 (2000)

    Article  CAS  Google Scholar 

  45. Alici, G., Devaud, V., Renaud, P., Spinks, G.: Conducting polymer microactuators operating in air. J. Micromech. Microeng. 19, 025017 (2009)

    Article  Google Scholar 

  46. Yan, B., Wu, Y., Gao, L.: Recent advances on polypyrrole electroactuators. Polymers 9, 446–466 (2017)

    Google Scholar 

  47. Tadesse, Y., Grange, R.W., Priyam, S.: Synthesis and cyclic force characterization of helical polypyrrole actuators for artificial facial muscles. Smart Mater. Struct. 18, 085008 (2009)

    Article  Google Scholar 

  48. Aguilar-Hernandez, J., Potje-Kamloth, K.: Evaluation of the electrical conductivity of polypyrrole polymer composites. J. Appl. Phys. 34, 1700–1711 (2001)

    CAS  Google Scholar 

  49. Wu, Y., Alici, G., Spinks, G.M., Wallace, G.G.: Fast trilayer polypyrrole bending actuators for high speed applications. Synth. Met. 156, 1017–1022 (2006)

    Article  CAS  Google Scholar 

  50. Ding, J., Liu, L., Spinks, G.M., Zhou, D., Wallace, G.G., Gillespie, J.: High performance conducting polymer actuators utilising a tubular geometry and helical wire interconnects. Synth. Met. 138, 391–398 (2003)

    Article  CAS  Google Scholar 

  51. Osaka, L., McCullough, R.D.: Advances in molecular design and synthesis of regioregular polythiophenes. Acc. Chem. Res. 41, 1202–1214 (2008)

    Article  CAS  Google Scholar 

  52. McCullough, R.D., Lowe, R.D.: Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J. Chem. Soc. Chem. Commun. 1, 70–72 (1992)

    Article  Google Scholar 

  53. Loewe, R.S., Khersonsky, S.M., McCullough, R.D.: A simple method to prepare head-to-tail coupled, regioregular Poly(3-alkylthiophenes) using grignard metathesis. Adv. Mater. 11, 250–253 (1999)

    Article  CAS  Google Scholar 

  54. Chen, T.A., Rieke, R.D.: The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization. J. Am. Chem. Soc. 114, 10087–10088 (1992)

    Article  CAS  Google Scholar 

  55. Fuchiwaki, M., Takashima, W., Kaneto, K.: Soft actuators based on Poly(3-alkyl thiophene) films upon electrochemical oxidation and reduction. Mol. Cryst. Liq. Cryst. 374, 513–520 (2002)

    Article  CAS  Google Scholar 

  56. Xi, B., Truong, V.T., Whitten, P.G., Ding, J., Spinks, G., Wallace, G.G.: Poly(3-methylthiophene) electrochemical actuators showing increased strain and work per cycle at higher operating stresses. Polymers 47, 7720–7725 (2006)

    Article  CAS  Google Scholar 

  57. Thongbor, S., Pattavarakorn, D.: Electromechanical properties of electroactive polythiophene/elastomer blend. In: TIChE International Conference ms007 (2001)

    Google Scholar 

  58. Tttavarakorn, D., Youngta, P., Jaesrichai, S., Thongbor, S., Chaimongkol, P.: Electroactive performances of conductive polythiophene/hydrogel hybrid artificial muscle. Energy Procedia 34, 673–681 (2013)

    Article  Google Scholar 

  59. Okuzaki, H., Suzuki, H., Ito, T.: Electrically driven PEDOT/PSS actuators. Synth. Met. 159, 2233–2236 (2009)

    Article  CAS  Google Scholar 

  60. Okuzaki, H., Hosaka, K., Suzuki, H., Ito, T.: Effect of temperature on humido-sensitive conducting polymer actuators. Sens. Actuator A-Phys. 157, 96–99 (2010)

    Article  CAS  Google Scholar 

  61. Ikushima, K., John, S., Ono, A., Nagamitsu, S.: PEDOT/PSS bending actuators for autofocus micro lens applications. Synth. Met. 160, 1877–1883 (2010)

    Article  CAS  Google Scholar 

  62. Cho, M.S., Seo, H.J., Nam, J.D., Choi, H.R., Koo, J.C., Song, K.G., Lee, Y.: A solid state actuator based on the PEDOT/NBR system. Sens. Actuator B-Chem. 119, 621–624 (2006)

    Article  CAS  Google Scholar 

  63. Farajollahi, M., Woehling, V., Plesse, C., Nguyen, G.T.M., Vidal, F., Sassani, F., Yang, V.X.D., Madden, J.D.W.: Self-contained tubular bending actuator driven by conducting polymers. Sens. Actuator A-Phys. 249, 45–56 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gendron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gendron, D. (2019). Conducting Polymer Based Ionic Polymer Metal Composite Actuators. In: Inamuddin, Asiri, A. (eds) Ionic Polymer Metal Composites for Sensors and Actuators. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-13728-1_3

Download citation

Publish with us

Policies and ethics