Skip to main content

Estimating Field-Level Rotations as Dynamic Cycles

  • Chapter
  • First Online:
  • 363 Accesses

Part of the book series: Natural Resource Management and Policy ((NRMP,volume 50))

Abstract

Crop rotation systems are an important part of agricultural production for managing pests, diseases, and soil fertility. Recent interest in sustainable agriculture focuses on low input-use practices which require knowledge of the underlying dynamics of production and rotation systems. Policies to limit chemical application depending on proximity to waterways and flood management require field-level data and analysis. Additionally, many supply estimates of crop production omit the dynamic effects of crop rotations. We estimate a dynamic programming model of crop rotation which incorporates yield and cost intertemporal effects in addition to field-specific factors including salinity and soil quality. Using an Optimal Matching algorithm from the Bioinformatics literature, we determine empirically observed rotations using a geo-referenced panel dataset of 14,000 fields over 13 years. We estimate the production parameters which satisfy the Euler equations of the field-level rotation problem and solve an empirically observed four-crop rotation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alston, J. M., Andersen, M. A., James, J. S., & Pardey, P. G. (2010). Persistence pays: U.S. agricultural productivity growth and the benefits from public R&D spending. New York: Springer.

    Google Scholar 

  • Antle, J., & Stoorvogel, J. J. (2006). Predicting the supply of ecosystem services from agriculture. American Journal of Agricultural Economics, 88, 1174–1180.

    Article  Google Scholar 

  • Antle, J., & Valdivia, R. O. (2006). Modeling the supply of ecosystem services from agriculture: A minimum data approach. Australian Journal of Agricultural and Resource Economics, 50, 1–15.

    Article  Google Scholar 

  • Beneke, R., & Winterboer, R. (1973). Linear programming applications to agriculture. Ames: Iowa State University Press.

    Google Scholar 

  • Bertsekas, D. P. (1976). Dynamic programming and stochastic control. Mathematics in Science and Engineering, 125, 222–293.

    Google Scholar 

  • Brzinsky-Fay, C., Kohler, U., & Luniak, M. (2006). Sequence analysis with Stata. The Stata Journal, 6, 435–460.

    Article  Google Scholar 

  • Burt, O., & Allison, J. (1963). Farm management decisions with dynamic programming. Journal of Farm Economics, 45(1), 121–136.

    Article  Google Scholar 

  • Csiszar, I. (1991). Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Annals of Statistics, 19(4), 2032–2066.

    Article  Google Scholar 

  • Doole, G. J. (2008). Optimal management of annual ryegrass (Lolium rigidum Guad.) in phase rotations in the Western Australian Wheatbelt. The Australian Journal of Agricultural and Resource Economics, 52(3), 339–362.

    Google Scholar 

  • Doole, G. J. (2009). A practical algorithm for multiple-phase control systems in agricultural and natural resource economics. Journal of Agricultural and Resource Economics, 34(1), 1–21.

    Google Scholar 

  • El-Nazer, T., & McCarl, B. (1986). The choice of crop rotation: A modeling approach and case study. American Journal of Agricultural Economics, 68(1), 127–136.

    Article  Google Scholar 

  • Heady, E. O. (1948). The economics of rotations with farm and production policy applications. Journal of Farm Economics, 30(4), 645–664.

    Article  Google Scholar 

  • Hennessy, D. A. (2006). On monoculture and the structure of crop rotations. American Journal of Agricultural Economics, 88(4), 900–914.

    Article  Google Scholar 

  • Hildreth, C., & Reiter, S. (1951). On the choice of crop rotation. In T. Koopmans (Ed.), Analysis of production and allocation. New York: Wiley.

    Google Scholar 

  • Jaenicke, E. C. (2000). Testing for intermediate outputs in dynamic DEA Models: Accounting for soil capital in rotational crop production and productivity measures. Journal of Productivity Analysis, 14(3), 247–266.

    Article  Google Scholar 

  • Johnson, S. E. (1933). The theory of combination enterprises on individual farms. Journal of Farm Economics, 15(4), 656–667.

    Article  Google Scholar 

  • Kennedy, J. (1981). An alternative method for deriving optimal fertilizer rates: Comment and extension. Review of Marketing and Agricultural Economics, 49(3), 203–209.

    Google Scholar 

  • Kennedy, J. (1986). Rules for optimal fertilizer carryover: An alternative explanation. Review of Marketing and Agricultural Economics, 54(2), 3–10.

    Google Scholar 

  • Kennedy, J., Whan, I., Jackson, R., & Dillon, J. (1973). Optimal fertilizer carryover and crop recycling policies for a tropical grain crop. Australian Journal of Agricultural Economics, 17(2), 104–113.

    Article  Google Scholar 

  • Kullback, J. (1959). Information theory and statistics. New York: Wiley.

    Google Scholar 

  • Langpap, C., Hascic, I., & Wu, J. (2008). Protecting watershed ecosystems through targeted local land use policies. American Journal of Agricultural Economics, 90(3), 684–700.

    Article  Google Scholar 

  • Langpap, C., & Wu, J. (2008). Predicting the effect of land-use policies on wildlife habitat abundance. Canadian Journal of Agricultural Economics, 56(2), 195–217.

    Article  Google Scholar 

  • Levine, R. D. (1980). An information theoretical approach to inversion problems. Journal of Physics A: Mathematical General, 13, 91–108.

    Article  Google Scholar 

  • Livingston, R., Roberts, M., & Zhang, Y. (2012, Nov). Optimal sequential plantings of corn and soybeans under price uncertainty. Working Paper.

    Google Scholar 

  • Mittelhammer, R. C., Judge, G. G., & Miller, D. J. (2003). Econometric foundations. New York: Cambridge University Press.

    Google Scholar 

  • Needleman, S., & Wunsch, C. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443–453.

    Article  Google Scholar 

  • Orazem, P., & Miranowski, J. (1994). A dynamic model of acreage allocation with general and crop-specific soil capital. American Journal of Agricultural Economics, 76(3), 385–395.

    Article  Google Scholar 

  • Peterson, G. (1955). Selection of maximum profit combinations of livestock enterprises and crop rotation. Journal of Farm Economics, 37(3), 546–554.

    Article  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423.

    Article  Google Scholar 

  • Skilling, J. (1989). The axioms of maximum entropy. In J. Skilling (Ed.), Maximum entropy and Bayesian methods in science and engineering (pp. 173–187). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Swanson, E. R. (1956). Application of programming analysis to Corn Belt Farms. Journal of Farm Economics, 38(2), 408–419.

    Article  Google Scholar 

  • Tanaka, K., & Wu, J. (2004). Evaluating the effect of conservation policies on agricultural land use: A site specific modeling approach. Canadian Journal of Agricultural Economics, 52(3), 217–235.

    Article  Google Scholar 

  • Taylor, C. (1983). Certainty equivalence for determination of optimal fertilizer application rates with carry-over. Western Journal of Agricultural Economics, 8(1), 64–67.

    Google Scholar 

  • Tegene, A., Huffman, W., & Miranowski, J. (1988). Dynamic corn supply functions: A model with explicit optimization. American Journal of Agricultural Economics, 70(1), 103–111.

    Article  Google Scholar 

  • Thomas, A. (2002). A dynamic model of on-farm integrated nitrogen management. European Review of Agricultural Economics, 30(4), 439–460.

    Article  Google Scholar 

  • Thoreson, B., Clark, B., Soppe, R., Keller, A., Bastiaanssen, W., & Eckhardt, J. (2009). Comparison of evapotranspiration estimates from remote sensing (SEBAL), water balance, and crop coefficient approaches. In World Environmental and Water Resource Congress, May 17–21 2009, Kansas City, MO, USA, https://doi.org/10.1061/41036(342)437.

  • Wu, J., Adams, R. M., Kling, C. L., & Tanaka, K. (2004). From microlevel decisions to landscape changes: An assessment of agricultural conservation policies. American Journal of Agricultural Economics, 86(1), 26–41.

    Article  Google Scholar 

  • Wu, J., & Babcock, B. (1998). The choice of tillage, rotation, and soil testing practices: Economic and environmental implications. American Journal of Agricultural Economics, 80(3), 494–511.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Howitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

MacEwan, D., Howitt, R.E. (2019). Estimating Field-Level Rotations as Dynamic Cycles. In: Msangi, S., MacEwan, D. (eds) Applied Methods for Agriculture and Natural Resource Management. Natural Resource Management and Policy, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-030-13487-7_9

Download citation

Publish with us

Policies and ethics