Skip to main content

Nano-biopesticides: Synthesis and Applications in Plant Safety

  • Chapter
  • First Online:
Nanobiotechnology Applications in Plant Protection

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanotechnology has tremendous applications in the food, pesticide, fertilizer, chemical, and agriculture industries. Nanostructures or nanoformulations are fabricated by manipulating, at atomic or molecular level, reactants in definite ratios for improving the physical, chemical, and conduction properties as well as strengthening the functioning materials applicable in agriculture, medicine, and environmental monitoring. Therefore, in the present chapter, the synthesis and application of possible nanostructures using active pesticide compounds (APC) from plants for development of nano-biopesticides (NBP) with focus on enforcement into polymers are discussed. Then, developed nano-biopesticides, their properties, quality control, and synthesis techniques with reference to electro-spinning, delivery mechanism, and effects and mode of action on insects for plant protection are demonstrated. Further, the efficiency of nano-biopesticides for insect control via in vitro applications as anti-feedant, larvicidal, and pupicidal bioassays and field conditions are explained. Moreover, the risk related to synthesis of NBP relative to plants, environment, human health concerns, regulations factors, and future generations of nano-biopesticides are analyzed. The nanoparticles, APC molded into functional nano-biopesticides via green technology, could selectively target insects for plant and environmental safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Paino M, Muñoz-Bonilla A, Fernández-García M (2017) Antimicrobial polymers in the nano-world. Nano 7:48. https://doi.org/10.3390/nano7020048

    Article  CAS  Google Scholar 

  • Arizona State University (2018) Ask a biologist. https://askabiologist.asu.edu/building-right-nanoparticles

  • Atef MMS, Behle RW (2017) Comparing formulations for a mixed-microbial biopesticide with Bacillus thuringiensis var. kurstaki and Beauveria bassiana blastospores. J Arch Phytopathol Plan Prot 50:15–16

    Google Scholar 

  • BaCgli MA, Moraes JC, Carvalho GA, Ecole CC, Gonçalves-Gervásio RD (2003) Effect of sodium silicate application on the resistance of wheat plants to the green-aphids Schizaphisgraminum (Rond.) (Hemiptera: Aphididae). Neotrop Entomol 32:659–663

    Article  Google Scholar 

  • Benelli G (2016) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. J Parasitol Res 115:23–34

    Article  Google Scholar 

  • Benelli G (2018) Mode of action of nanoparticles against insects. Environ Sci Pollut Res 25(13):12329–12341

    Article  CAS  Google Scholar 

  • Bergeson LL (2010a) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79–85

    Article  Google Scholar 

  • Bergeson LL (2010b) Nanosilver pesticide products: what does the future hold? Environ Qual Manag 19(4):73–82

    Article  Google Scholar 

  • Bioinicia (2017) Innovative material application. Electrospinning process bioinicia. https://bioinicia.com/electrospinning-equipment-fiber-fabrication/electrospinning-process-bioinicia-2/

  • Bisotto-de-Oliveira R, De Jorgea BC, Roggiaa I, Sant’Anab J, Pereira CV (2014) Nanofibers as a vehicle for the synthetic attactant TRIMEDLURE to be used for ceratitis capitata Wied: (Diptera, Tethritidae) capture. J Res Updat Polym Sci 3:40–47

    Article  Google Scholar 

  • Bogutska KI, Sklyarov YP, Prylutskyy YI (2013) Zinc and zinc nanoparticles: biological role and application in biomedicine. Ukr Bioorg Acata 1:9–16

    Google Scholar 

  • Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155

    Article  CAS  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SECGS, Wijnhoven WP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62

    Article  CAS  Google Scholar 

  • BSI, British Standards Institution (2005) Vocabulary – nanoparticles, publicly available specification, PAS. BSI, London, p 71

    Google Scholar 

  • Buzea C, Blandino IIP, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerfaces 2(4):17–172

    Google Scholar 

  • Costa MN, Veigas B, Jacob JM, Santos DS, Gomes J, Baptista PV, Martins R, Inácio J, Fortunato E (2014) A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology 25:094006. (12pp)

    Article  CAS  Google Scholar 

  • Crampton L (2017) Biological vs chemical pest control: benefits and disadvantages Available at: https://owlcation.com/agriculture/Biological-vs-Chemical-Pest-Control. Accessed 29 Aug 2018

  • De Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561

    Article  CAS  Google Scholar 

  • Dimetry NZ, Hussein HM (2016) Role of nanotechnology in agriculture with special reference to pest control. Int J Pharmtech Res 9(10):121–144

    CAS  Google Scholar 

  • Dou Y, Sun X, Guo G, Dong J, Lu M, Zhang W (2016) Electrospun pure chitosan nanofibrous mats with high structural stability for dura mater regeneration. Front Bioeng Biotechnol Conference Abstract: 10th World Biomaterials Congress. Frontiers https://doi.org/10.3389/conf.FBIOE.2016.01.01956

  • Dsouza CP (2018) Application of nanomaterials in intergarted pest management chapter 6 traning programme on advances in applications of nanotechnology. CICR–CIRCOT, Mumbai, pp 54–63

    Google Scholar 

  • El-bendary HM, El-Helaly AA (2013) First record nanotechnology in agricultural: silicanano-particles a potential new insecticide for pest control. Appl Sci Rep 4:241–246

    Google Scholar 

  • Feynman R (1960) There is plenty of room at the bottom. An invitation to enter new field of physics annual meeting of American Physical Society at Caltech Engineering and Science, pp 22–36

    Google Scholar 

  • Gilligan TM, Passoa SC (2014) LepIntercept – an identification resource for intercepted Lepidoptera larvae. Identification technology program (ITP). Fort Collins, CO. http://idtools.org/id/leps/lepintercept/morphology.html

  • Gogoi R, Dureja P, Singh PK (2009) Nanoformulations a safer and effective option for agrochemicals. Indian Farming 59:7–12

    Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Pérez-de-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195

    Article  Google Scholar 

  • IFOAM (2011) IFOAM position paper on “the use of nanotechnologies and nanomaterials in organic agriculture”. Available at: http://www.ifoam.org/press/positions/IFOAMPositionPaperNanotech2011_Approved.pdf. Accessed 1 Mar 2012

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4(165):1–7

    Google Scholar 

  • Jianhui Y, Kelong H, Yuelong W, Suqin L (2005) Study on anti-pollution nanopreparation of dimethomorph and its performance. Chin Sci Bull 50(2):108–112

    Article  Google Scholar 

  • Kamaraj C, rajakumar G, rahuman AA, Velayutham K, Bagavan A, Zahir AA, Elango G (2012) Feeding deterrent activity of synthesized silver nanoparticles using Manilkara zapota leaf extract against the house fly Musca domestica (Diptera: Muscidae). Parasitol Res 111:2439–2448

    Article  Google Scholar 

  • Karlstad University (2018) Nanoscience lecture. Lecture 1. http://www3.kau.se/kurstorg/files/n/C10B9C4709ddc16A23JOTTJF6D8D/NanoI-Lecture1%202012.pdf

  • Komarneni S (1992) Nanocomposites. J Mater Chem 2:1219–1230

    Article  CAS  Google Scholar 

  • Koul O (2011) Microbial biopesticides: opportunities and challenges CAB. Rev Persp Agric Vet Sci Nutr Nat Resour 6(056):1–26

    Google Scholar 

  • Koul O (2012) Plant biodiversity as a resource for natural products for insect pest management. In: Gurr GM, Wratten SD, Snyder WE, Read DMY (eds) Biodiversity and insect pests key issues for sustainable management. Wiley, West Sussex, pp 85–105

    Chapter  Google Scholar 

  • Lade BD, Patil AS (2017) Silver nano fabrication using leaf disc of Passiflora foetida Linn. Appl Nanosci 7(5):181–119

    Article  CAS  Google Scholar 

  • Lade BD, Gogle DP, Nandeshwar SB (2017) Nano bio pesticide to constraint plant destructive pests. J Nanomed Res 6(3):1–9

    Article  Google Scholar 

  • Lao SB, Zhang ZX, Xu HH, Jiang GB (2010) Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohydr Polym 82:1136–1142

    Article  CAS  Google Scholar 

  • Larrouturou L (2005) The nanosciences. Centre national De La Recherché Science, France, p 42

    Google Scholar 

  • Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q et al (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63:241–246

    Article  CAS  Google Scholar 

  • Liu S, Yuan L, Yue X, Zheng Z, Tang Z (2008) Recent advances in nanosensors for organophosphate pesticide detection. Adv Powder Technol 19:419–441

    Article  CAS  Google Scholar 

  • Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, Ray PC (2010) Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 487:92–96

    Article  CAS  Google Scholar 

  • Luque AP, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci J 65:540–545

    Article  Google Scholar 

  • Lyons K, Scrinis G (2009) Under the regulatory radar? Nanotechnologies and their impacts for rural Australia. In: Merlan F, Raftery D (eds) Tracking rural change: community, policy and technology in Australia New Zealand and Europe. Australian National University E Press, Canberra, pp 151–171

    Google Scholar 

  • Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Agric Sci 29(1):1–13

    Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62(2):161–165

    Article  Google Scholar 

  • Morejon B, Pilaquinga F, Domenech F, Ganchala D, Debut A, Neira M (2018) Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) to control Aedes aegypti L. (Diptera: Culicidae). J Nanotechnol 2018:1–8

    Article  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. J Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    Article  CAS  Google Scholar 

  • Naturland (2011) Naturland standards for organic aquaculture. Available at: http://www.naturland.de/fileadmin/MDB/documents/Richtlinien_englisch/Naturland-Standards_Aquaculture.pdf. Accessed 1 Mar 2012

  • Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, Nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1483

    Article  CAS  Google Scholar 

  • Oancea S, Padureanu S, Oancea AV (2009) Growth dynamics of corn plants during anionic clays action. Lucrari Stiintifice Seria Agronomie 51:212–217

    Google Scholar 

  • Prasad KG (2018) Advances in application of nanotechnology training module chapter 5, electrospinning for production of nano materials, pp 48–53 organised by ICAR–CIRCOT, MS, India Sept 24–28

    Google Scholar 

  • Ragaei M, Sabry AH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3(2):528–545

    Google Scholar 

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78. https://doi.org/10.3389/fchem.2017.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer-Verlag, Netherlands, Dordrecht pp 1–32

    Google Scholar 

  • Schmidt H, Jonschker G, Goedicke S, Mennig M (2000) The sol-gel process as a basic technology for nanoparticle-dispersed inorganic-organic composites. J Solgel Sci Technol 19:39–51

    Article  CAS  Google Scholar 

  • Schwerdtfeger P (2003) Gold goes nano-from small clusters to low-dimensional assemblies. Angew Chem Int Ed 42:1892–1895

    Article  CAS  Google Scholar 

  • Scrinis G, Lyons K (2010) Nanotechnology and the techno-corporate agri-food paradigm. In: Lawrence G, Lyons K, Wallington T (eds) Food security nutrition and sustainability. Earthscan, London, pp 252–270

    Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  • Sharma R, Dewanjee S, Kole C (2016) Utilization of nanoparticles for plant protection. Springer International Publishing, Cham

    Book  Google Scholar 

  • Shi WJ, Shi WW, Gao SY, Lu YT, Cao YS, Zhou P (2010) Effects of nanopesticide chlorfenapyr on mice. Environ Toxicol Chem 92:1901–1907

    Article  CAS  Google Scholar 

  • Siva C, Kumar MS (2015) Pesticidal activity of eco-friendly synthesized silver nanoparticles using Aristolochia indica extract against Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). Int J Adv Sci Technol Res 5:197–226

    Google Scholar 

  • Sivapriyajothi S, Kumar PM, Kovendan K, Subramaniam J, Murugan K (2014) Larvicidal and Pupicidal activity of synthesized silver nanoparticles using Leucas Aspera leaf extract against mosquito vectors Aedes Aegypti and Anopheles Stephensi. J Entomol Acarol Res 46(2):1–8

    Article  Google Scholar 

  • Stevens J, Dunse K, Fox J, Evans S, Anderson M (2012) Biotechnological approaches for the control of insect pests in crop plants. Pestic Adv Chem Bot Pestic:1–41. https://doi.org/10.5772/46233

  • Taniguchi N (1974) On the basic concept of nanotechnology. In: Proceedings of the international congress on Production Engineering. JSPE, Tokyo

    Google Scholar 

  • The Royal Society & The Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. Nanosci Nanotechnol, London, pp 1–127

    Google Scholar 

  • USA National Nanotechnology Initiative (2018) Nanogov national nanotechnology initiative. https://www.nano.gov/nanotech-101/what/definition

  • Waage J (1997) Global developments in biological control and the implications for Europe. EPPO Bull 27:5–13

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Department of Molecular Biology & Genetic Engineering RTM Nagpur University, for providing the research facility and lab space.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lade, B.D., Gogle, D.P. (2019). Nano-biopesticides: Synthesis and Applications in Plant Safety. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13296-5_9

Download citation

Publish with us

Policies and ethics