Skip to main content

Application of Nanomaterials in Plant Disease Diagnosis and Management

  • Chapter
  • First Online:
Book cover Nanobiotechnology Applications in Plant Protection

Abstract

Nanomaterials have substantial application in plant disease diagnosis and management. The nanoparticles and nanosensors have wide application in the detection of microbial infections and diagnosis of plant diseases. Enzyme-based biosensors coated with Au, Ag, Cu, or Ti-NPs may greatly enhance the sensitivity of diagnostic probes for plant infection detection. The nanomaterials may be used in plant disease management through two ways, i.e., direct application of the nanoparticles of a suitable antimicrobial chemical or by encapsulating an antimicrobial chemical by a nanomaterial. Direct application of nanoparticles has been found to suppress a number of plant pathogenic fungi and some bacteria. Nanomaterials, nanotubes, and nanocapsules can efficiently carry higher concentration of active ingredients of pesticides, etc. and may also regulate the release of the chemical. We present here a critical review on the use of nanomaterials in plant disease diagnosis and management and have discussed in detail various relevant aspects, including the commercial use of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwala M, Choudhury B, Yadav RNS (2014) Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian J Microbiol 54(3):365–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609–1618

    Article  CAS  PubMed  Google Scholar 

  • Al-Hazmi F, Alnowaiser F, Al-Ghamdi AA, Al-Ghamdi AA, Aly MM, Al-Tuwirqi RM, El-Tantawy F (2012) A new large–scale synthesis of magnesium oxide nanowires: structural and antibacterial properties. Superlattice Microstruct 52(2):200–209

    Article  CAS  Google Scholar 

  • Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP, Guerrero-Vargas JA, Rodríguez-Páez JE (2017) ZnO nanoparticles (ZnO–NPs) and their antifungal activity against coffee fungus Erythriciumsalmonicolor. Appl Nanosci 7(5):225–241

    Article  CAS  Google Scholar 

  • Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size–dependent antimicrobial properties of CuO nanoparticles against Gram–positive and–negative bacterial strains. Int J Nanomedicine 7:3527–3535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu M, Seggerson S, Henshaw J, Jiang J, Cordona RA, Lefave C (2004) Nano–biosensor development for bacterial detection during human kidney infection. Use of NanoWire arrays (GNWA). Glycoconj J 21:487–496

    Article  CAS  PubMed  Google Scholar 

  • Berger TJ, Spadaro JA, Chapin SE, Becker RO (1976) Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother 9(2):357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. IJSID 2(1):21–36

    Google Scholar 

  • Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. In: Sustainable disease management in a European context. Springer, Berlin, pp 355–363

    Chapter  Google Scholar 

  • Borcherding J, Baltrusaitis J, Chen H, Stebounova L, Wu CM, Rubasinghege G, Mudunkotuwa IA, Caraballo JC, Zabner J, Grassian VH, Comellas AP (2014) Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environ Sci Nano 1(2):123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12(18):2163–2175

    Article  CAS  PubMed  Google Scholar 

  • Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14(2):229–235

    Article  CAS  Google Scholar 

  • Brunel F, El Gueddari NE, Moerschbacher BM (2013) Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92(2):1348–1356

    Article  CAS  PubMed  Google Scholar 

  • Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J Chem Biol 4:185–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13(6):2287

    Article  CAS  Google Scholar 

  • Cao X, Ye Y, Liu S (2011) Gold nanoparticle–based signal amplification for biosensing. Anal Biochem 417:1–16

    Article  CAS  PubMed  Google Scholar 

  • Castañeda MT, Alegret S, Merkocm A (2007) Electrochemical sensing of DNA using gold nanoparticles. Electroanalysis 19:743–753

    Article  CAS  Google Scholar 

  • Chambers CW, Proctor CM, Kabler PW (1962) Bactericidal effect of low concentrations of silver. J Am Water Works Assoc 54(2):208–216

    Article  CAS  Google Scholar 

  • Chartuprayoon N, Rheem Y, Chen W, Myung N (2010) Detection of plant pathogen using LPNE grown single conducting polymer Nanoribbon. In: Meeting abstracts. The Electrochemical Society, Pennington

    Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N (2004) Antifungal activity of polymer–based copper nanocomposite coatings. Appl Phys Lett 85(12):2417–2419

    Article  CAS  Google Scholar 

  • Clement JL, Jarret PS (1994) Antimicrobial silver. Metal-Based Drugs 1:467–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubchak S, Ogar A, Mietelski AW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscularmycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8:103–108

    Article  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS (2009) Antibacterial and antifungal activity of a soda–lime glass containing copper nanoparticles. Nanotechnology 20(50):505701

    Article  CAS  PubMed  Google Scholar 

  • Fang W, Xing M, Zhang J, (2014) A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Applied Catalysis B: Environmental, 160:240–246

    Google Scholar 

  • Fang Y, Ramasamy R (2015) Current and prospective methods for plant disease detection. Biosensors 5(3):537–561.

    Google Scholar 

  • Frasco MF, Chaniotakis N (2009) Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9:7266–7286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frewer LJ, Norde W, Fischer ARH, Kampers FWH (2011) Nanotechnology in the agri–food sector: implications for the future. Wiley–VCH, Weinheim

    Book  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthorainfestans. RSC Adv 3(44):21743–21752

    Article  CAS  Google Scholar 

  • Gill P, Alvandi AH, Abdul-Tehrani H, Sadeghizadeh M (2008) Colorimetric detection of Helicobacter pylori DNA using isothermal helicase–dependent amplification and gold nanoparticle probes. Diagn Microbiol Infect Dis 62:119–124

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Gruère G, Narrod C, Abbott L (2011) Agriculture, food, and water nanotechnologies for the poor: opportunities and constraints. Policy brief 19. International Food Policy Research Institute, Washington, DC. Available from http://www.ifpri.org/sites/default/files/publications/bp019.pdf. Accessed 6 May 2014

  • Guzman MG, Dille F, Godet S (2009) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biol Eng 2:104–111

    CAS  Google Scholar 

  • Hatschek E (1931) Electro Chem. Processes, Ltd, assignee. Brouisol. British Patent No 392–556

    Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215

    Article  CAS  PubMed  Google Scholar 

  • Horst RK (1990) Westcott’s plant disease handbook, 5th edn. Chapman & Hall, New York

    Book  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonashydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta A Mol Biomol Spectrosc 90:78–84

    Article  CAS  Google Scholar 

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Part A 41(12):2699–2711

    Article  CAS  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, and Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Materials Lett 115:13–17

    Google Scholar 

  • Kasprowicz MJ, Kozioł M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56(3):247–253

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Haque Z (2013) Morphological and biochemical responses of five tobacco cultivars to simultaneous infection with Pythium aphanidermatum and Meloidogyne incognita. Phytopat Medit 52:98–109

    Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231

    Article  CAS  Google Scholar 

  • Khan MR, Rizvi TF (2017) Application of nanofertilizer and nanopesticides for improvements in crop production and protection. In: Nanoscience and plant–soil systems. Springer, Cham, pp 405–427

    Chapter  Google Scholar 

  • Khan MR, Mohidin FA, Khan U, Ahamad F (2016) Native Pseudomonas spp. suppressed the root–knot nematode in in vitro and in vivo, and promoted the nodulation and grain yield in the field grown mungbean. Biol Control 101:159–168

    Article  Google Scholar 

  • Khan MR, Rizvi TF, Ahamad F (2019) Effect of nanoparticles on phytopathogens. In: Ghobanpour M, Wani SH (eds) Advances in phytonanotechnology: from synthesis to application. Elsevier/Academic Press, London, p 466

    Google Scholar 

  • Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19(8):760–764

    PubMed  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnaraj CR, Ramachandran K, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc 93:95–99

    Article  CAS  PubMed  Google Scholar 

  • Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene–based biosensors. Biosens Bioelectron 26:4637–4648

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Sharon M, Choudhary AK (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92

    Google Scholar 

  • Lamsal K, Sang-Woo K, Jung JH, Kim YS, Kim KU, Lee YS (2010) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Microbiology 39(1):26–32

    Google Scholar 

  • Lopez MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13–46

    CAS  PubMed  Google Scholar 

  • Mandler D, Kraus-Ophir S (2011) Self–assembled monolayers (SAMs) for electrochemical sensing. J Solid State Electrochem 15:1535–1558

    Article  CAS  Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung MY, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium–forming phytopathogenic fungi. Plant Pathol J 25(4):376–380

    Article  CAS  Google Scholar 

  • Mishra VL, Sharma R (2017) Green synthesis of nanoparticles and their antibacterial activity against pathogenic bacteria. Int J Pharma Sci Res 90:24

    Google Scholar 

  • Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62:889

    Article  CAS  Google Scholar 

  • Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73:1–7

    Article  CAS  PubMed  Google Scholar 

  • Nene YL, Thapliyal PN (1979) List of chemicals used in plant disease control. In: Fungicides in plant disease control, 2nd edn. Oxford & IBH Publishing Co, New Delhi/Bombay/Calcutta, pp 429–441

    Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9(3):035004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica–silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Patra JK, Baek K-H (2017) Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against food borne pathogenic bacteria along with its anticandidal and antioxidant effects. Front Microbiol 8:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102(3–4):186–196

    Article  CAS  PubMed  Google Scholar 

  • Pérez-de-Luque A, Hermosín MC (2013) Nanotechnology and its use in agriculture. In: Bagchi D, Bagchi M, Moriyama H, Shahidi F (eds) Bio–nanotechnology: a revolution in food, biomedical and health sciences. Wiley–Blackwell, West Sussex, pp 299–405

    Google Scholar 

  • Pérez-López B, Merkoçi A (2011) Nanoparticles for the development of improved (bio) sensing systems. Anal Bioanal Chem 399:1577–1590

    Article  CAS  PubMed  Google Scholar 

  • Perlatti B, de Souza Bergo PL, da Silva MF (2013) Polymeric nanoparticle–based insecticides: a controlled release purpose for agrochemicals, insecticides. In: Trdan S (ed) Insecticides: development of safer and more effective technologies. InTech, Rijeka, pp 523–550

    Google Scholar 

  • Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM (2016) Antifungal activity of biosynthesised copper nanoparticles evaluated against red root–rot disease in tea plants. J Exp Nanosci 11(13):1019–1031

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Rad F, Mohsenifar A, Tabatabaei M, Safarnejad MR, Shahryari F, Safarpour H, Foroutan A, Mardi M, Davoudi D, Fotokian M (2012) Detection of Candidatus Phytoplasma aurantifolia with a quantum dots fret–based biosensor. J Plant Pathol 94:525–534

    Google Scholar 

  • Rakshit S, Ghosh S, Chall S, Mati SS, Moulik SP, Bhattacharya SC (2013) Controlled synthesis of spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: a cost effective and eco friendly approach. RSC Adv 3(42):19348–19356

    Article  CAS  Google Scholar 

  • Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 3(26):10471–10478

    Article  CAS  Google Scholar 

  • Rodríguez-Tobías H, Morales G, Olivas A, Grande D (2015) One-pot formation of ZnO-graft-Poly (d, l-Lactide) hybrid systems via microwave-assisted polymerization of d, l-Lactide in the presence of ZnO nanoparticles. Macromol Chem Phy 216(15):1629–1637

    Article  CAS  Google Scholar 

  • Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M, Shahryari F, Hasanzadeh F (2012) Development of a quantum dots FRET–based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34:507–515

    Article  Google Scholar 

  • Safavi K, Mortazaeinezahad F, Esfahanizadeh M, Javad AM (2011) In vitro antibacterial activity of nanomaterial for using in tobacco plants tissue culture. World Acad Sci Eng Technol 79:372–373

    Google Scholar 

  • Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62:4833–4838

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non–cross–linking DNA hybridization. J Am Chem Soc 125:8102–8103

    Article  CAS  PubMed  Google Scholar 

  • Shiddiky MJ, Torriero AA (2011) Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron 26:1775–1787

    Article  CAS  PubMed  Google Scholar 

  • Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1:18–52

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immune sensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano–gold based lateral flow immune–dipstick test. Thin Solid Films 519:1156–1159

    Article  CAS  Google Scholar 

  • Sofi W, Gowri M, Shruthilaya M, Rayala S, Venkatraman G (2012) Silver nanoparticles as an antibacterial agent for endodontic infections. BMC Infect Dis 12(1):60

    Article  Google Scholar 

  • Sonkaria S, Ahn SH, Khare V (2012) Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric 4(1):8–18

    Article  CAS  PubMed  Google Scholar 

  • Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One–pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  • Thompson AKDAM (2004) Biosensors for the detection of bacteria. Can J Microbiol 50:69–77

    Article  PubMed  Google Scholar 

  • Umasankar Y, Ramasamy RP (2013) Highly sensitive electrochemical detection of methyl salicylate using electroactive gold nanoparticles. Analyst 138:6623–6631

    Article  CAS  PubMed  Google Scholar 

  • Vaseghi A, Safaie N, Bakhshinejad B, Mohsenifar A, and Sadeghizadeh M (2013) Detection of Pseudomonas syringae pathovars by thiol-linked DNA–Gold nanoparticle probes. Sensors and Actuators B: Chemical, 181:644–651

    Google Scholar 

  • Wang Z, Ma L (2009) Gold nanoparticle probes. Coord Chem Rev 253:1607–1618

    Article  CAS  Google Scholar 

  • Wang S, Lawson R, Ray RC, Yu H (2011) Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicol Ind Health 27:547–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3(7):643–646

    Article  CAS  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79:513–516

    Article  CAS  Google Scholar 

  • Yousef JM, Danial EN (2012) In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano–particle zinc oxide against pathogenic strains. J Health Sci 2(4):38–42

    Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnOnanofluids). J Nanopart Res 9(3):479–489

    Article  CAS  Google Scholar 

  • Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle–based colorimetric biosensing assays. Chembiochem 9:2363–2371

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M.R., Rizvi, T.F., Ahamad, F. (2019). Application of Nanomaterials in Plant Disease Diagnosis and Management. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13296-5_2

Download citation

Publish with us

Policies and ethics