Skip to main content

Finite Volume Methods

  • Chapter
  • First Online:
Shallow Water Hydraulics

Abstract

The one-dimensional shallow water equations (SWE), or Saint-Venant equations, are a system of nonlinear hyperbolic conservations laws (Toro, Shock-capturing methods for free surface shallow flows. Wiley, Singapore, 2001). The mathematical meaning behind these “surnames” linked to the development of Saint-Venant is clearly elucidated by the definitions (Karni, Lecture notes on numerical methods for hyperbolic equations: short book course. Taylor and Francis, London, 2011; Vazquez-Cendón, Solving hyperbolic equations with finite. Springer, New York, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aureli, F., Maranzoni, A., Mignosa, P., & Ziveri, C. (2008). A weighted surface-depth gradient method for the numerical integration of the 2D shallow water equations with topography. Advances in Water Resources, 31(7), 962–974.

    Article  Google Scholar 

  • Bermudez, A., & Vazquez-Cendón, M. E. (1994). Upwind methods for hyperbolic conservation laws with source terms. Computers & Fluids, 23(8), 1049–1071.

    Article  MathSciNet  MATH  Google Scholar 

  • Bradford, S. F., & Sanders, B. F. (2002). Finite-volume model for shallow-water flooding of arbitrary topography. Journal of Hydraulic Engineering, 128(3), 289–298.

    Google Scholar 

  • Bradford, S. F., & Sanders, B. F. (2005). Performance of high-resolution, nonlevel bed, shallow-water models. Journal of Engineering Mechanics, 131(10), 1073–1081.

    Article  Google Scholar 

  • Brocchini, M., & Dodd, N. (2008). Nonlinear shallow water equation modeling for coastal engineering. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(2), 104–120.

    Google Scholar 

  • Brufau, P., Vázquez‐Cendón, M. E., & García‐Navarro, P. (2002). A numerical model for the flooding and drying of irregular domains. International Journal for Numerical Methods in Fluids, 39(3), 247–275.

    Google Scholar 

  • Castro-Orgaz, O., & Chanson, H. (2016). Minimum specific energy and transcritical flow in unsteady open channel flow. Journal of Irrigation and Drainage Engineering, 142(1), 04015030.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Chanson, H. (2017). Ritter’s dry-bed dam-break flows: Positive and negative wave dynamics. Environmental Fluid Mechanics, 17(4), 665–694.

    Article  Google Scholar 

  • Chaudhry, M. H. (2008). Open-channel flow (2nd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Colella, P., & Woodward, P. (1984). The piecewise-parabolic method (PPM) for gas dynamical simulations. Journal of Computational Physics, 54(1), 174–201.

    Article  MATH  Google Scholar 

  • Cunge, J. A. (1975). Rapidly varying flow in power and pumping canals. In K. Mahmood & V. Yevjevich (Eds.), Unsteady flow in open channels, 14, 539–586. Fort Collins, CO, USA: Water Resources Publications.

    Google Scholar 

  • Cunge, J. A., Holly, F. M., & Verwey, A. (1980). Practical aspects of computational river hydraulics. London: Pitman.

    Google Scholar 

  • Dressler, R. (1954). Comparison of theories and experiments for the hydraulic dam-break wave. In Proceedings of International of Association of Scientific Hydrology, 3(38), 319–328. Rome, Italy: Assemblée Générale.

    Google Scholar 

  • Favre, H. (1935). Etude théorique et expérimentale des ondes de translation dans les canaux découverts [Theoretical and experimental study of travelling surges in open channels]. Dunod, Paris, France (in French).

    Google Scholar 

  • Gharangik, A. M., & Chaudhry, M. H. (1991). Numerical simulation of hydraulic jump. Journal of Hydraulic Engineering, 117(9), 1195–1211.

    Article  Google Scholar 

  • Glaister, P. (1987). Difference schemes for the shallow water equations (Numerical Analysis Report 9/87). UK: Department of Mathematics, University of Reading.

    Google Scholar 

  • Godunov, S. K. (1959). A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik, 47(3), 271–306 (in Russian).

    MathSciNet  MATH  Google Scholar 

  • Gottlieb, S., & Shu, C. W. (1998). Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 67(221), 73–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Hafsteinsson, H. J., Evers, F. M., & Hager, W. H. (2017). Solitary wave run-up: wave breaking and bore propagation. Journal of Hydraulic Research, 55(6), 787–798.

    Article  Google Scholar 

  • Hancock, S. L. (1980). PISCES industrial simulation code manual. Physics International.

    Google Scholar 

  • Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 49(3), 357–393.

    Article  MathSciNet  MATH  Google Scholar 

  • Harten, A., Lax, P., & van Leer, B. (1983). On upstream differencing and Godunov-type scheme for hyperbolic conservation laws. Society for Industrial and Applied Mathematics, 25(1), 35–61.

    MathSciNet  MATH  Google Scholar 

  • Henderson, F. M. (1966). Open channel flow. New York: MacMillan Co.

    Google Scholar 

  • Hirsch, C. (1988). Numerical computation of internal and external flows, 1: Fundamentals of numerical discretization. Chichester, England: Wiley.

    MATH  Google Scholar 

  • Hirsch, C. (1990). Numerical computation of internal and external flows, 2: Computational methods for inviscid and viscous flows. Chichester, England: Wiley.

    MATH  Google Scholar 

  • Hoffman, J. D. (2001). Numerical methods for engineers and scientists (2nd ed.). New York: Marcel Dekker.

    MATH  Google Scholar 

  • Jain, S. C. (2001). Open channel flow. New York: Wiley.

    Google Scholar 

  • Karni, S. (2011). Nonlinear hyperbolic conservation laws-a brief informal introduction. Lecture notes on numerical methods for hyperbolic equations: short book course. London: Taylor and Francis.

    Google Scholar 

  • Khan, A. A., & Lai, W. (2014). Modeling shallow water flows using the discontinuous Galerkin method. Taylor and Francis, New York: CRC Press.

    Book  MATH  Google Scholar 

  • Lauber, G. (1997). Experimente zur Talsperrenbruchwelle im glatten geneigten Rechteckkanal [Experiments to the dam break wave in smooth sloping rectangular channel]. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (in German).

    Google Scholar 

  • Lax, P. (1954). Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 7, 159–193.

    Article  MathSciNet  MATH  Google Scholar 

  • Lax, P. D., & Wendroff, B. (1960). Systems of conservation laws. Communications in Pure and Applied Mathematics, 13(2), 217–237.

    Article  MATH  Google Scholar 

  • LeVeque, R. J. (1992). Numerical methods for conservation laws. Basel, Switzerland: Birkhäuser.

    Book  MATH  Google Scholar 

  • LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems. New York: Cambridge University Press.

    Google Scholar 

  • Mingham, C. G., & Causon, D. M. (1998). High-resolution finite-volume method for shallow water flows. Journal of Hydraulic Engineering, 124(6), 605–614.

    Article  Google Scholar 

  • Nujic, M. (1995). Efficient implementation of non-oscillatory schemes for the computation of free-surface flows. Journal of Hydraulic Research, 33(1), 100–111.

    Article  Google Scholar 

  • Ozmen-Cagatay, H., & Kocaman, S. (2010). Dam-break flows during initial stage using SWE and RANS approaches. Journal of Hydraulic Research, 48(5), 603–611.

    Article  Google Scholar 

  • Ozmen-Cagatay, H., & Kocaman, S. (2011). Dam-break flow in the presence of obstacle: Experiment and CFD simulation. Engineering Applications of Computational Fluid Mechanics, 5(4), 541–552.

    Article  Google Scholar 

  • Ritter, A. (1892). Die Fortpflanzung von Wasserwellen [Propagation of water waves]. Zeitschrift Verein Deutscher Ingenieure, 36(2), 947–954 (in German).

    Google Scholar 

  • Roache, P. J. (1972). Computational fluid dynamics. Albuquerque NM: Hermosa Publishers.

    MATH  Google Scholar 

  • Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2), 357–372.

    Article  MathSciNet  MATH  Google Scholar 

  • Rouse, H. (1961). Fluid motion in a gravitational field. IIHR film, The University of Iowa, Iowa.

    Google Scholar 

  • Sanders, B. F. (2001). High-resolution and non-oscillatory solution of the St. Venant equations in non-rectangular and non-prismatic channels. Journal of Hydraulic Research, 39(3), 321–330.

    Article  Google Scholar 

  • Schoklitsch, A. (1917). Über Dammbruchwellen [On dam break waves]. Kaiserliche Akademie der Wissenschaften, Wien, Mathematisch-Naturwissenschaftliche Klasse. Sitzungberichte IIa, 126, 1489–1514 (in German).

    MATH  Google Scholar 

  • Sivakumaran, N. S., Tingsanchali, T., & Hosking, R. J. (1983). Steady shallow flow over curved beds. Journal of Fluid Mechanics, 128, 469–487.

    Article  Google Scholar 

  • Stoker, J. J. (1957). Water waves: The mathematical theory with applications. New York: Interscience Publishers.

    MATH  Google Scholar 

  • Sweby, P. K. (1984). High resolution schemes using flux limiters for hyperbolic conservation laws. Journal of the Society for Industrial and Applied Mathematics, Series B Numerical Analysis, 21(5), 995–1011.

    MathSciNet  MATH  Google Scholar 

  • Sweby, P. K. (1999). Godunov methods (Numerical Analysis Report 7/99), UK: Department of Mathematics, University of Reading.

    Google Scholar 

  • Synolakis, C. E. (1986). The runup of long waves (Ph.D. thesis). California Institute of Technology, Califormia.

    Google Scholar 

  • Terzidis, G., & Strelkoff, T. (1970). Computation of open channel surges and shocks. Journal of the Hydraulics Division, ASCE, 96(HY12), 2581–2610.

    Google Scholar 

  • Toro, E. F. (1992). Riemann problems and the WAF method for solving the two-dimensional shallow water equations. Philosophical Transactions of the Royal Society of London, Series A, 338, 43–68.

    Google Scholar 

  • Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows. Singapore: Wiley.

    MATH  Google Scholar 

  • Toro, E. F. (2009). Riemann solvers and numerical methods for fluid dynamics: A practical introduction. Berlin, Germany: Springer.

    Book  MATH  Google Scholar 

  • van Albada, G. D., van Leer, B., & Roberts, W. W. (1982). A comparative study of computational methods in cosmic gas dynamics. Astronomy & Astrophysics, 108(1), 76–84.

    MATH  Google Scholar 

  • van Leer, B. (1979). Towards the ultimate conservative difference scheme, V: A second-order sequel to Godunov´s method. Journal of Computational Physics, 32, 101–136.

    Article  MATH  Google Scholar 

  • van Leer, B. (2006). Upwind and high-resolution methods for compressible flow: From Donor cell to residual distribution schemes. Computer Physics Communications, 1(2), 192–206.

    MATH  Google Scholar 

  • Vazquez-Cendón, M. E. (2015). Solving hyperbolic equations with finite volume methods. New York: Springer.

    Book  MATH  Google Scholar 

  • White, F. M. (2009). Fluid mechanics. New York: McGraw-Hill.

    Google Scholar 

  • Ying, X., Khan, A., & Wang, S. (2004). Upwind conservative scheme for the Saint Venant equations. Journal of Hydraulic Engineering, 130(10), 977–987.

    Article  Google Scholar 

  • Ying, X., & Wang, S. (2008). Improved implementation of the HLL approximate Riemann solver for one-dimensional open channel flows. Journal of Hydraulic Research, 46(1), 21–34.

    Article  MathSciNet  Google Scholar 

  • Zhou, J. G., Causon, D. M., Mingham, C. G., & Ingram, D. M. (2001). The surface gradient method for the treatment of source terms in the shallow water equations. Journal of Computational Physics, 168(1), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Zoppou, C., & Roberts, S. (2003). Explicit schemes for dam-break simulations. Journal of Hydraulic Engineering, 129(1), 11–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castro-Orgaz .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro-Orgaz, O., Hager, W.H. (2019). Finite Volume Methods. In: Shallow Water Hydraulics. Springer, Cham. https://doi.org/10.1007/978-3-030-13073-2_9

Download citation

Publish with us

Policies and ethics