Skip to main content

Sediment Transport and Movable Beds

  • Chapter
  • First Online:
  • 984 Accesses

Abstract

Transportation of sediment is an important and frequent phenomenon in rivers. Sediment is mobilized as bed-load with particles sliding, saltating, and rolling over the river bed, or as a suspended-load, where particles move with the turbulent water flow away from the bed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Cantero-Chinchilla, F., Castro-Orgaz, O., Dey, S., & Ayuso, J. L. (2016). Nonhydrostatic dam break flows II: One-dimensional depth-averaged modelling for movable bed flows. Journal of Hydraulic Engineering, 142(12), 04016069.

    Article  Google Scholar 

  • Cantero-Chinchilla, F. N., Castro-Orgaz, O., Schmocker, L., Hager, W. H., & Dey, S. (2018). Depth-averaged modelling of granular dike overtopping. Journal of Hydraulic Research, 56(4), 537–550.

    Article  Google Scholar 

  • Cantero-Chinchilla, F. N., Castro-Orgaz, O., Dey, S. (2019). Prediction of overtopping dike failure: A sediment transport and dynamic granular bed deformation model. Journal of Hydraulic Engineering, 145(6), 04019021.

    Article  Google Scholar 

  • Cao, Z., Pender, G., Wallis, S., & Carling, P. (2004). Computational dam-break hydraulics over erodible sediment bed. Journal of Hydraulic Engineering, 130(7), 689–703.

    Article  Google Scholar 

  • Capart, H., & Young, D. L. (1998). Formation of a jump by the dam-break wave over a granular bed. Journal of Fluid Mechanics, 372, 165–187.

    Article  Google Scholar 

  • Capart, H., Young, D. L. (2002). Two-layer shallow water computations of torrential flows. In: Proceedings of River Flow, vol. 2, (pp. 1003–1012). Lisse, The Netherlands: Balkema.

    Google Scholar 

  • Dey, S. (2014). Fluvial hydrodynamics: Hydrodynamic and sediment transport phenomena. Berlin: Springer.

    Book  Google Scholar 

  • Fraccarollo, L., & Capart, H. (2002). Riemann wave description of erosional dam break flows. Journal of Fluid Mechanics, 461, 183–228.

    Article  MathSciNet  Google Scholar 

  • Greco, M., Iervolino, M., Leopardi, A., & Vacca, A. (2012). A two-phase model for fast geomorphic shallow flows. International Journal of Sediment Research, 27(4), 409–425.

    Article  Google Scholar 

  • Pontillo, M., Schmocker, L., Greco, M., & Hager, W. H. (2010). 1D numerical evaluation of dike erosion due to overtopping. Journal of Hydraulic Research, 48(5), 573–582.

    Article  Google Scholar 

  • Schmocker, L. (2011). Hydraulics of dike breaching. Ph.D. thesis. Zürich, Switzerland: Swiss Federal Institute of Technology.

    Google Scholar 

  • Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows. New York: Wiley.

    MATH  Google Scholar 

  • Wu, W. (2008). Computational river dynamics. London, U.K.: Taylor and Francis.

    Google Scholar 

  • Wu, W., & Wang, S. S. Y. (1999). Movable bed roughness in alluvial rivers. Journal of Hydraulic Engineering, 125(12), 1309–1312.

    Article  Google Scholar 

  • Wu, W., & Wang, S. S. Y. (2007). One-dimensional modeling of dam-break flow over movable beds. Journal of Hydraulic Engineering, 133(1), 48–58.

    Google Scholar 

  • Wu, W., & Wang, S. S. Y. (2008). One-dimensional explicit finite-volume model for sediment transport. Journal of Hydraulic Research, 46(1), 87–98.

    Article  MathSciNet  Google Scholar 

  • Wu, W., Wang, S. S. Y., & Jia, Y. (2000). Nonuniform sediment transport in alluvial rivers. Journal of Hydraulic Research, 38(6), 427–434.

    Article  Google Scholar 

  • Wu, W., Vieira, D. A., & Wang, S. S. Y. (2004). One-dimensional numerical model for nonuniform sediment transport under unsteady flows in channel networks. Journal of Hydraulic Engineering, 130(9), 914–923.

    Article  Google Scholar 

  • Ying, X., Khan, A. A., & Wang, S. S. Y. (2004). Upwind conservative scheme for the Saint Venant equations. Journal of Hydraulic Engineering, 130(10), 977–987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castro-Orgaz .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro-Orgaz, O., Hager, W.H. (2019). Sediment Transport and Movable Beds. In: Shallow Water Hydraulics. Springer, Cham. https://doi.org/10.1007/978-3-030-13073-2_10

Download citation

Publish with us

Policies and ethics