Skip to main content

Intelligent Situational-Awareness Architecture for Hybrid Emergency Power Systems in More Electric Aircraft

  • Chapter
  • First Online:
Deep Learning Applications for Cyber Security

Abstract

In this chapter, we exploit the deep learning and adaptive neuro-fuzzy inference system (ANFIS) techniques to develop an intelligent situational awareness system for energy management systems of the emergency hybrid auxiliary power unit (APU) for more-electric aircrafts. Our proposed security control strategy consists of two main mechanisms: (1) deep learning-based attack detection scheme that explores the techniques of convolutional neural networks, deconvolutional neural networks, and recurrent neural networks and (2) adaptive neuro-fuzzy inference system (ANFIS)-based estimation method to calculate the true values of the compromised data. In this chapter, we also present some simulation results to illustrate the effectiveness of our proposed method in detecting the cyber-attacks, such as false data injection (FDI) attacks, and mitigating the impact of the cyber-attacks in the energy management for the hybrid APUs in more-electric aircrafts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosero J, Ortega J, Aldabas E, Romeral L (2007) Moving towards a more electric aircraft. IEEE Aerosp Electron Syst Mag 22(3):3–9

    Article  Google Scholar 

  2. Wu S, Li Y (2014) Fuel cell applications on more electrical aircraft. In: 2014 17th International Conference on Electrical Machines and Systems (ICEMS). IEEE, pp 198–201

    Google Scholar 

  3. Roboam X, Langlois O, Piquet H, Morin B, Turpin C (2011) Hybrid power generation system for aircraft electrical emergency network. IET Electr Syst Transp 1(4):148–155

    Article  Google Scholar 

  4. Ziaeinejad S, Sangsefidi Y, Mehrizi-Sani A (2016) Fuel cell-based auxiliary power unit: EMS, sizing, and current estimator-based controller. IEEE Trans Veh Technol 65(6):4826–4835

    Article  Google Scholar 

  5. Akhave A, Chrysakis G, Gupta A (2014) Design and evaluation of a turbo-generator as an auxiliary power unit for hybrid vehicles. In: 5th IET Hybrid and Electric Vehicles Conference (HEVC 2014), 5 November 2014, IET, pp 1–7

    Google Scholar 

  6. Desideri U, Giglioli R, Lutzemberger G, Pasini G, Poli D (2017) Auxiliary power units for pleasure boats. In: 2017 6th International Conference on Clean Electrical Power (ICCEP). IEEE, pp 650–655

    Google Scholar 

  7. Rajashekara K, Jia Y (2016) An induction generator based auxiliary power unit for power generation and management system for more electric aircraft. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, pp 1–7

    Google Scholar 

  8. Waheed M, Cheng M (2017) A system for real-time monitoring of cybersecurity events on aircraft. In: 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). IEEE, pp 1–3

    Google Scholar 

  9. Kumar SA, Xu B (2017) Vulnerability assessment for security in aviation cyber-physical systems. In: 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). IEEE, pp 145–150

    Google Scholar 

  10. Huang X, Dong J (2017) Adaptive optimization deception attack on remote state estimator of aero-engine. In: 2017 29th Chinese Control and Decision Conference (CCDC). IEEE, pp 5849–5854

    Google Scholar 

  11. Motapon SN, Dessaint L-A, Al-Haddad K (2014) A robust H 2-consumption-minimization-based energy management strategy for a fuel cell hybrid emergency power system of more electric aircraft. IEEE Trans Ind Electron 61(11):6148–6156

    Article  Google Scholar 

  12. Garcia P, Fernandez LM, Garcia CA, Jurado F (2010) Energy management system of fuel-cell-battery hybrid tramway. IEEE Trans Ind Electron 57(12):4013–4023

    Article  Google Scholar 

  13. Thounthong P, Raël S, Davat B (2007) Control strategy of fuel cell and supercapacitors association for a distributed generation system. IEEE Trans Ind Electron 54(6):3225–3233

    Article  Google Scholar 

  14. Li C-Y, Liu G-P (2009) Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles. J Power Sources 192(2):525–533

    Article  MathSciNet  Google Scholar 

  15. Vural B, Boynuegri A, Nakir I, Erdinc O, Balikci A, Uzunoglu M, Gorgun H, Dusmez S (2010) Fuel cell and ultra-capacitor hybridization: a prototype test bench based analysis of different energy management strategies for vehicular applications. Int J Hydrog Energy 35(20):11161–11171

    Article  Google Scholar 

  16. Rodatz P, Paganelli G, Sciarretta A, Guzzella L (2005) Optimal power management of an experimental fuel cell/supercapacitor-powered hybrid vehicle. Control Eng Pract 13(1):41–53

    Article  Google Scholar 

  17. Greenwell W, Vahidi A (2010) Predictive control of voltage and current in a fuel cell–ultracapacitor hybrid. IEEE Trans Ind Electron 57(6):1954–1963

    Article  Google Scholar 

  18. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243

    Article  Google Scholar 

  19. Wei Y, Xia W, Lin M, Huang J, Ni B, Dong J, Zhao Y, Yan S (2016) HCP: a flexible CNN framework for multi-label image classification. IEEE Trans Pattern Anal Mach Intell 38(9):1901–1907

    Article  Google Scholar 

  20. Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307

    Article  Google Scholar 

  21. He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 37(9):1904–1916

    Article  Google Scholar 

  22. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp 1097–1105

    Google Scholar 

  23. Abdullah, Hasan MS (2017) An application of pre-trained CNN for image classification. In: 2017 20th International Conference of Computer and Information Technology (ICCIT), pp 1–6

    Google Scholar 

  24. Mondal M, Mondal P, Saha N, Chattopadhyay P (2017) Automatic number plate recognition using CNN based self synthesized feature learning. In: 2017 IEEE Calcutta Conference (CALCON), pp 378–381

    Google Scholar 

  25. Zhang J, Li Y, Yin J (2017) Modulation classification method for frequency modulation signals based on the time–frequency distribution and CNN. IET Radar Sonar Navig 12:244–249

    Article  Google Scholar 

  26. Savigny J, Purwarianti A (2017) Emotion classification on youtube comments using word embedding. In: 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA), pp 1–5

    Google Scholar 

  27. Ji S, Xu W, Yang M, Yu K (2013) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231

    Article  Google Scholar 

  28. Gudelek MU, Boluk SA, Ozbayoglu AM (2017) A deep learning based stock trading model with 2-D CNN trend detection. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp 1–8

    Google Scholar 

  29. Kim Y (2014) Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882

    Google Scholar 

  30. Kalchbrenner N, Grefenstette E, Blunsom P (2014) A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188

    Google Scholar 

  31. Dos Santos CN, Gatti M (2014) Deep convolutional neural networks for sentiment analysis of short texts. In: COLING, pp 69–78

    Google Scholar 

  32. Abdel-Hamid O, Mohamed A-R, Jiang H, Penn G (2012) Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp 4277–4280

    Google Scholar 

  33. Kuen J, Wang Z, Wang G (2016) Recurrent attentional networks for saliency detection. arXiv preprint arXiv:1604.03227

    Google Scholar 

  34. Liu N, Han J (2016) DHSNet: deep hierarchical saliency network for salient object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 678–686

    Google Scholar 

  35. Badrinarayanan V, Handa A, Cipolla R (2015) SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293

    Google Scholar 

  36. Yang J, Price B, Cohen S, Lee H, Yang M-H (2016) Object contour detection with a fully convolutional encoder-decoder network. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 193–202

    Google Scholar 

  37. Noh H, Hong S, Han B (2015) Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1520–1528

    Google Scholar 

  38. Elman JL (1990) Finding structure in time. Cogn Sci 14(2):179–211

    Article  Google Scholar 

  39. Song E, Soong FK, Kang HG (2017) Effective spectral and excitation modeling techniques for LSTM-RNN-based speech synthesis systems. IEEE/ACM Trans Audio Speech Lang Process 25(11):2152–2161

    Article  Google Scholar 

  40. Jia G, Lu Y, Lu W, Shi Y, Yang J (2017) Verification method for Chinese aviation radiotelephony readbacks based on LSTM-RNN. Electron Lett 53(6):401–403

    Article  Google Scholar 

  41. Gelly G, Gauvain JL (2018) Optimization of RNN-based speech activity detection. IEEE/ACM Trans Audio Speech Lang Process 26(3):646–656

    Article  Google Scholar 

  42. Sun L, Su T, Zhou S, Yu L (2017) GMU: a novel RNN neuron and its application to handwriting recognition. In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol 01, pp 1062–1067

    Google Scholar 

  43. Li W, Wen L, Chang MC, Lim SN, Lyu S (2017) Adaptive RNN tree for large-scale human action recognition. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp 1453–1461

    Google Scholar 

  44. Hsu HW, Ding JJ (2017) FasterMDNet: learning model adaptation by RNN in tracking-by-detection based visual tracking. In: 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp 657–660

    Google Scholar 

  45. Jang J-S (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  46. Motapon SN, Dessaint LA, Al-Haddad K (2014) A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft. IEEE Trans Ind Electron 61(3):1320–1334

    Article  Google Scholar 

  47. Michon M, Duarte J, Hendrix M, Simoes MG (2004) A three-port bi-directional converter for hybrid fuel cell systems. In: 2004 IEEE 35th Annual Power Electronics Specialists Conference, PESC’04, vol 6. IEEE, pp 4736–4742

    Google Scholar 

  48. Sak H, Senior A, Beaufays F (2014) Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Fifteenth Annual Conference of the International Speech Communication Association

    Google Scholar 

  49. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  50. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Google Scholar 

  51. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M et al (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gihan J. Mendis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mendis, G.J., Kamal, M.B., Wei, J. (2019). Intelligent Situational-Awareness Architecture for Hybrid Emergency Power Systems in More Electric Aircraft. In: Alazab, M., Tang, M. (eds) Deep Learning Applications for Cyber Security. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-13057-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13057-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13056-5

  • Online ISBN: 978-3-030-13057-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics